Preview

Dependability

Advanced search

Artificial Intelligence: strategies and methods for solving complex problems

https://doi.org/10.21683/1729-26462025-25-1-46-57

Abstract

The Aim is to specify the concepts of “artificial intelligence” and “complex problem”, as well as to examine the state of the art in the application of artificial intelligence in solving complex problems. Methods. The author used contextual search, system analysis, and generalisation of information. Results. The paper identifies the key obstacle preventing the application of artificial intelligence in solving complex problems that consists in the lack of a conceptual and technical solution to present interdisciplinary knowledge in a form that could be processed and synthesised using artificial intelligence. Computer training that uses a variety of data sets, but does not involve an understanding of the synthesis process that the human brain so easily deals with, prohibits artificial intelligence from discovering something new, fundamentally unknown, which is imperative for solving complex problems. A common language is required that would simulate the processes of human thinking. Conclusion. The analysis and recommendations presented in this paper allow looking at the problem of artificial intelligence application as part of solving complex problems from a point of view that is different from the currently common focus on the use of fast search algorithms (the so-called large language models). The creation of a translator language between different fields of knowledge should contribute to an interdisciplinary exchange, the development of creative thinking, the emergence of new ideas and innovative solutions in various fields of human activity. An elaborate language will allow solving complex problems by combining various disciplines.

About the Author

Alexandra A. Bochkova
NRNU MEPhI
Russian Federation

Alexandra A. Bochkova, 2-nd year student, Faculty for Business Informatics and Integrated Systems Management,

31, Kashirskoye shosse, Moscow, 115409.



References

1. Mukherjee U.P. From Tafa to Robu: AI in the Fiction of Satyajit Ray. In: Imagining AI: How the World Sees Intelligent Machines. Oxford; 2023. DOI: 10.1093/oso/9780192865366.003.0015.

2. Moloi T., Marwala T. A High-Level Overview of Artificial Intelligence: Historical Overview and Emerging Developments. In: Artificial Intelligence and the Changing Nature of Corporations. Springer, Cham; 2021. DOI: 10.1007/9783-030-76313-8_2.

3. Tencent Research Institute, CAICT, Tencent AI Lab., Tencent open platform. Artificial Intelligence’s Past. In: Artificial Intelligence. Palgrave Macmillan, Singapore; 2021. DOI: 10.1007/978-981-15-6548-9_2.

4. González de Posada F., González Redondo F.A., Gonzalez A.H. Leonardo Torres Quevedo: Pioneer of Computing, Automatics, and Artificial Intelligence. IEEE Annals of the History of Computing 2021;43(3):22-43. DOI: 10.1109/MAHC.2021.3082199.

5. Bradshaw G.F., Langley P.W., Simon H.A. Studying scientific discovery by computer simulation. Science 1983;222(4627):971-975.

6. Schmidt M., Lipson H. Distilling free-form natural laws from experimental data. Science 2009;324:81-85.

7. Udrescu S.M., Tegmark M. AI Feynman: A physicsinspired method for symbolic regression. Science Advances 2020;6(16). DOI: 10.1126/sciadv.aay2631.

8. Chalmers D.J., French R.M., Hofstadter D.R. High-level perception, representation, and analogy: A critique of artificial intelligence methodology. Journal of Experimental & Theoretical Artificial Intelligence 1992;4:185-211.

9. GOST R 59277- 2020. Artificial intelligence systems. Classification of artificial intelligence systems. Moscow: Standartinform; 2021. (in Russ.)

10. Jumper J., Evans R., Pritzel A. et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583-589.

11. Biswas A.K. Autonomous Intelligence in ProblemSolving by Searching in the field of Artificial Intelligence. International journal of scientific research in science, engineering and technology 2022;9(6). DOI: 10.32628/ijsrset22962.

12. Azzam M., Beckmann R. How AI Helps to Increase Organizations’ Capacity to Manage Complexity – A Research Perspective and Solution Approach Bridging Different Disciplines. IEEE Transactions on Engineering Management 2022;71:2324-2337. DOI: 10.1109/tem.2022.3179107.

13. Systematic Complex Problem Solving in the Age of Digitalization and Open Innovation. In: Cavallucci D., Brad S., Livotov P., editors. Proceedings of the 20th International TRIZ Future Conference (TFC 2020). Cluj-Napoca (Romania); October 14-16, 2020. Springer International Publishing; 2020. DOI: 10.1007/978-3-030-61295-5.

14. Eppe M., Gumbsch C., Kerzel M. et al. Intelligent problem-solving as integrated hierarchical reinforcement learning. Nature Machine Intelligence 2022;4:11-20. DOI: 10.1038/s42256-021-00433-9.

15. De Arruda H.F., Comin C.H., Costa L. da F. Problemsolving using complex networks. The European Physical Journal B: Condensed Matter and Complex Systems 2019;92(6):19. DOI: 10.1140/EPJB/E2019-100100-8.

16. Xinxin Liu. Opportunities of artificial intelligence for supporting complex problem-solving: Findings from a scoping review. Computers & Education: Artificial Intelligence 2023;4:100138. DOI: 10.1016/j.caeai.2023.100138.

17. Wang S., Ji Y. A strategy of artificial intelligence with chemical fingerprinting to predict drug phase behaviors in complex systems. Preprint; 2023. DOI: 10.22541/au.168106505.57179711/v1.

18. Li X., Lin W., Guan B. The impact of computing and machine learning on complex problem ‐ solving. Engineering reports 2023;5(6). DOI: 10.1002/eng2.12702.

19. Li B., Wei Z., Wu J. et al. Machine Learning-enabled Globally Guaranteed Evolutionary Computation. Nature Machine Intelligence 2023;5:457-467. DOI: 10.1038/s42256023-00642-4.

20. Zhang W. Machine Learning for Solving Unstructured Problems. In: Nakamori Y., editor. Knowledge Technology and Systems. Translational Systems Sciences. Vol 34. Springer (Singapore); 2023. DOI: 10.1007/978-981-99-1075-5_4.

21. Suyal P., Dutt S., Sharma R. et al. (2022). An Agile Review of Machine Learning Technique. In: Proceedings of 2022 11th International Conference on System Modeling & Advancement in Research Trends (SMART); 16-17 December, 2022. Pp. 75-79. DOI: 10.1109/SMART55829.2022.10047305.

22. Douglass F. Deep Learning and Neural Networks: Methods and Applications. In: Shanmugam T., Bansal S.A., editors. Cutting-Edge Technologies In Innovations In Computer Science And Engineering. San International Scientific Publication; 2023. DOI: 10.59646/csebookc8/004.

23. Yamana Y. Deep Learning and Neural Networks: Methods. In: Shanmugam T., Bansal S.A., editors. CuttingEdge Technologies In Innovations In Computer Science And Engineering. San International Scientific Publication; 2023. DOI: 10.59646/csebookc7/004.

24. Nguyen T.T., Nguyen C.M., Huynh-The T. et al. Solving Complex Sequential Decision-Making Problems by Deep Reinforcement Learning with Heuristic Rules. In: Proceedings of Computer Science – ICCS 2023: 23rd International Conference; Prague (Czech Republic); July 3–5, 2023. Part II. Pp. 298-305. DOI: 10.1007/978-3-031-36021-3_30.

25. Pattanayak S. Mathematical Foundations. In: Pro Deep Learning with TensorFlow 2.0. Apress: Berkeley, CA; 2023. Pp. 1-108. DOI: 10.1007/978-1-4842-8931-0_1.

26. Tian S.F., Li B. Gradient-optimized physics-informed neural networks (GOPINNs): a deep learning method for solving complex nonlinear problems. Acta Phys. Sin. 2023;72(10):100202. DOI: 10.7498/aps.72.20222381.

27. Gaspar-Cunha A., Costa P., Monaco F. et al. Scalability of Multi-objective Evolutionary Algorithms for Solving RealWorld Complex Optimization Problems. In: Emmerich M. et al. Evolutionary Multi-Criterion Optimization. EMO 2023. Lecture Notes in Computer Science; Vol 13970. Springer, Cham; 2023. DOI: 10.1007/978-3-031-27250-9_7.

28. Zhao X., Jia X., Zhang T. et al. Evolutionary Algorithms With Blind Fitness Evaluation for Solving Optimization Problems With Only Fuzzy Fitness Information. IEEE Transactions on Fuzzy Systems 2023;31(11):3995-4009. DOI: 10.1109/tfuzz.2023.3273308.

29. Kóczy L.T. Discrete Bacterial Memetic Evolutionary Algorithms for Solving High Complexity Problems: PLENARY TALK. In: Proceedings of the 2022 IEEE 16th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara (Romania); 2022. Pp. 13-14. DOI: 10.1109/SACI55618.2022.9919503.

30. Aishwaryaprajna, Rowe J.E. Evolutionary Algorithms for Solving Unconstrained, Constrained and Multiobjective Noisy Combinatorial Optimisation Problems. (accessed 09.01.2025). Available at: https://arxiv.org/abs/2110.02288v1.

31. Xiaoyong Li. Logical Programming and Humor Language in the Open AI Environment of Natural Democracy. 2023. DOI: 10.31219/osf.io/3ux4n.

32. Shakarian P., Simari G.I., Callahan D. Reasoning about Complex Networks: A Logic Programming Approach. (accessed 09.01.2025). Available at: https://arxiv.org/abs/2209.15067v1.

33. Lancia G., Serafini P. Computational Complexity and ILP Models for Pattern Problems in the Logical Analysis of Data. Algorithms 2021;14(8):235. DOI: 10.3390/A14080235.

34. Pan L., Albalak A., Wang X. Logic-LM: Empowering Large Language Models with Symbolic Solvers for Faithful Logical Reasoning. (accessed 09.01.2025). Available at: https://arxiv.org/abs/2305.12295v2.

35. Tymoshenko P., Zasoba Y., Kovalchuk O. et al. Neuroevolutionary algorithms for neural networks generating. Herald of Khmelnytskyi National University Technical Sciences 2022;315(6(1)):240-244. DOI: 10.31891/23075732-2022-315-6-240-244.

36. Chalumeau F., Boige R., Lim B. et al. Neuroevolution is a Competitive Alternative to Reinforcement Learning for Skill Discovery. (accessed 09.01.2025). Available at: https://arxiv.org/abs/2210.03516v4.

37. Rodzin S., Bova V., Kravchenko Y. et al. Deep Learning Techniques for Natural Language Processing. In: Proceedings of the 11-th Computer Science On-line Conference Artificial Intelligence Trends in Systems; 2022, Vol. 2. Pp. 121-130. DOI: 10.1007/978-3-031-09076-9_11.

38. Kureichik V.V., Rodzin S.I., Bova V.V. Deep learning methods for natural language text processing. Izvestiya SFedU. Engineering Sciences 2022;2(226):189-199. (accessed 16.02.2024). Available at: https://cyberleninka.ru/article/n/metody-glubokogo-obucheniya-dlya-obrabotkitekstov-na-estestvennom-yazyke.

39. Chastikova V.A., Kozachek K.V., Gulyay V.G. Methods of natural language processing in solving problems of detecting social engineering attacks. Bulletin of the Adyghe State University, the series “Natural-Mathematical and Technical Sciences” 2021;291. DOI: 10.53598/2410-32252021-4-291-95-108.

40. Khot T., Richardson K., Khashabi D. et al. Learning to Solve Complex Tasks by Talking to Agents. (accessed 09.01.2025). Available at: https://arxiv.org/abs/2110.08542v2.

41. Wang H., Feng S., He T. et al. Can Language Models Solve Graph Problems in Natural Language? (accessed 09.01.2025). Available at: https://arxiv.org/abs/2305.10037v3.

42. Vetter D., Tithi J.J., Westerlund M. et al. Using Sentence Embeddings and Semantic Similarity for Seeking Consensus when Assessing Trustworthy AI. (accessed 09.01.2025). Available at: https://arxiv.org/abs/2208.04608v1.

43. Massri M.B., Spahiu B., Grobelnik M. et al. Towards InnoGraph: A Knowledge Graph for AI Innovation. In: WWW ‘23 Companion: Companion Proceedings of the ACM Web Conference 2023. Pp. 843-849. DOI: 10.1145/3543873.3587614.

44. Dadure P., Pakray P., Bandyopadhyay S. Challenges and Opportunities in Knowledge Representation and Reasoning. In: J. Wang, editor. Encyclopedia of Data Science and Machine Learning (5 volumes) 2023; Volume IV. Pp. 2464-2478. DOI: 10.4018/978-1-7998-9220-5.ch148.

45. Beishui L. On Interdisciplinary Studies of a New Generation of Artificial Intelligence and Logic. Social Sciences in China 2022;43(3):21-42. DOI: 10.1080/02529203.2022.2122207.

46. Dignum V., Casey D., Serratto-Pragman T. et al. On the importance of AI research beyond disciplines. (accessed 09.01.2025). Available at: https://arxiv.org/abs/2302.06655v1.

47. Yolkin S.V., Gavrilov D.A. [Meanings and symmetries in the Dial language system]. [MEPhI-98 Scientific Session: Collection of science papers in 11 parts. Part 5]. Moscow: MGIFI; 1998. (in Russ.)

48. Kulikov V.V., Gavrilov D.A., Yolkin S.V. [“hOOMDial”, a universal artificial language: Guidelines for language learners]. Moscow: Galaksi Neyshn; 1994. (in Russ.)

49. Yolkin S.V., Gavrilov D.A. [The Dial universal artificial language as an interface]. In: [Proceedings of the V International Information Technology Forum. Public Development and Public Information Congress. Information Technology of the Post-Perestroika Social Development Section]. MAI; November 20-23, 1996. Moscow: MAI; 1996. P. 51-53. (in Russ.)

50. Kulikov V.V. [The prisoner of immortality: an educational sci-fi novel]. Moscow: SINTEK; 1998. (in Russ.)

51. Altshuller G. [Finding an idea. Introduction to TRIZ, the theory of solving inventive problems]. Moscow: Alpina Publisher; 2022. (in Russ.)

52. Schmiegelow F., Melo F.C.L. A market research on challenges influencing artificial intelligence adoption. Business: Theory and Practice 2023;24(1):250-257. https://doi.org/10.3846/btp.2023.17655.

53. Hoffman R., Miller T., Clancey W. Psychology and AI at a Crossroads: How Might Complex Systems Explain Themselves? American Journal of Psychology 2022;135(4):365-378. DOI: 10.5406/19398298.135.4.01.

54. Repede S.E. Researching disinformation using artificial intelligence techniques: challenges. Bulletin of “Carol I” National Defense University 2023;12(2):69-85. DOI: 10.53477/2284-9378-23-21.

55. Birhane A. Automating Ambiguity: Challenges and Pitfalls of Artificial Intelligence. (accessed 09.01.2025). Available at: https://arxiv.org/abs/2206.04179v1.

56. Gaud D. Ethical Considerations for the Use of AI Language Model. International Journal For Research in Applied Science and Engineering Technology 2023;11(VII). doi: 10.22214/ijraset.2023.54513.

57. Almazrouie O. Ethical implications of artificial intelligence in healthcare. International journal of advanced research (IJAR) 2023;11(03):446-448. DOI: 10.21474/ijar01/16444.

58. Adah W.A., Ikumapayi N.A., Muhammed H.B. The Ethical Implications of Advanced Artificial General Intelligence: Ensuring Responsible AI Development and Deployment. (accessed 09.01.2025). Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4457301.

59. Kamila M.K., Jasrotia S.S. Ethical issues in the development of artificial intelligence: recognizing the risks. (accessed 09.01.2025). Available at: https://www.emerald.com/insight/content/doi/10.1108/ijoes-05-2023-0107/full/html.

60. Talukdar J., Singh T., Barman B. Ethics of Intelligence. 2023. DOI: 10.1007/978-981-99-3157-6_12.

61. Hu M.Y., Yuan F. Legal regulation of clinical application of artificial intelligence. National Medical Journal of China 2023;103(18):1363-1366. DOI: 10.3760/cma.j.cn112137-20230217-00227.

62. Shakhnazarov B.A. Legal Regulation of Relations Using Artificial Intelligence. Actual Problems of Russian Law 2022;17(9):63-72. https://doi.org/10.17803/1994-1471.2022.142.9.063-072. (in Russ.)

63. Weissinger L.B. AI, Complexity, and Regulation. In: J.B. Bullock et al., editors. The Oxford Handbook of AI Governance. Oxford University Press; 2022. Pp. 619-638. DOI: 10.1093/oxfordhb/9780197579329.013.66.

64. Cuellar M-F., Huq A.Z. Artificially Intelligent Regulation. Daedalus 2022;151(2):335-347. DOI: 10.1162/daed_a_01920.

65. Matyuk Y.S. Legal Regulation of Artificial Intelligence: Foreign Practices. Russian Journal of Legal Studies 2022;9(2):107-115. DOI: 10.17816/RJLS91009. (in Russ.)

66. Lucaj L., van der Smagt P., Benbouzid D. AI Regulation Is (not) All You Need. In: FAccT ‘23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency; 2023. Pp. 1267-1279. DOI: 10.1145/3593013.3594079.


Review

For citations:


Bochkova A.A. Artificial Intelligence: strategies and methods for solving complex problems. Dependability. 2025;25(1):46-57. (In Russ.) https://doi.org/10.21683/1729-26462025-25-1-46-57

Views: 275


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1729-2646 (Print)
ISSN 2500-3909 (Online)