Preview

Надежность

Расширенный поиск

Совместные меры важности Бирнбаума для трех компонентов восстановимой системы с большим числом состояний

https://doi.org/10.21683/1729-2646-2023-23-3-3-13

Полный текст:

Аннотация

В настоящей статье предложены новые совместные меры важности двух и трех компонентов восстановимых систем с большим числом состояний, основанные на классической мере Бирнбаума. При рассмотрении восстановимой системы в качестве первого шага определяются совместные условия важности двух и трех компонентов. Затем измеряются вероятности каждой из важностей. Предложенный метод применяется к набору данных. Приводится иллюстративный пример. Как и в случае с мерой Бирнбаума, предложенные меры имеют общий характер, поскольку зависят от вероятностных свойств компонентов и структуры системы. Эти меры полезны при рассмотрении восстановимых систем.

Об авторах

В. М. Чако
Колледж Святого Фомы (Автономный), Тиссур, Каликутский университет
Индия

доцент и декан Департамента статистики,

Керала, Индия, 680001



Э. С. Франсон
Колледж Святого Фомы (Автономный), Тиссур, Каликутский университет
Индия

научный сотрудник Департамента статистики

Керала, Индия, 680001



М. Амрута
Колледж Святого Фомы (Автономный), Тиссур, Каликутский университет
Индия

научный сотрудник Департамента статистики,

Керала, Индия, 680001



Список литературы

1. Amrutkar K.P., Kamalja K.K. An overview of various importance measures of reliability system // International Journal of Mathematical, Engineering and Management Sciences. 2017. Vol. 2(3). Pp. 150-171.

2. Barlow R.E., Proschan F. Importance of system components and fault tree events // Stochastic Processes and their Applications. 1975. Vol. 3. Pp. 153-173.

3. Birnbaum Z.W. On the importance of different components in a multicomponent system. In: Krishnaia P.R., editor. Multivariate analysis – II. New York: Academic Press, 1969. Pp. 581-592.

4. Borgonovo E., Apostolakis G.E. A new importance measure for risk-informed decision making // Reliability Engineering & System Safety. 2001. Vol. 72. Pp. 193-212.

5. Cai Z., Si S., Sun S. et al. Optimization of linear consecutive-k-out-of-n system with a Birnbaum importancebased genetic algorithm // Reliability Engineering & System Safety. 2016. Vol. 152. Pp. 248-258.

6. Cai Z., Si S., Liu Y. et al. Maintenance optimization of continuous state systems based on performance improvement // IEEE Transactions on Reliability. 2018. Vol. 67(2). Pp. 651-665.

7. Chacko V.M. New Joint Importance Measures for Multistate Systems // International Journal of Statistics and Reliability Engineering. 2020. Vol. 7(1). Pp. 140-148.

8. Chacko V.M. On Birnbaum Type Joint Importance Measures for Multistate Reliability Systems // Communications in Statistics – Theory and Methods. 2021. Vol. 52(9). Pp. 2799-2818. DOI: 10.1080/03610926.2021.1961000

9. Chacko V.M. On joint importance measures for multistate reliability systems // Reliability: Theory and Applications. 2021. Vol. 16. Pp. 286-293.

10. Chacko V.M. On Joint Importance Measures for Multistate System’s Reliability // Operations Research: Methods, Techniques, and Advancements. 2022. Vol. 4(65). Pp. 286-293.

11. Chacko V.M. On new joint importance measures for multistate reliability systems. In: Chapter 7. Computational Intelligence in Sustainable Reliability Engineering. Scrivener Publishing (Wiley), 2022.

12. Chacko V.M. (2022) Birnbaum joint importance measures for repairable multistate systems // Communications in Statistics – Theory and Methods. 2023. Vol. 52(9). Pp. 2799-2818.

13. Chacko V.M., Manoharan M. Joint importance measures for the multistate system. In: Verma A.K., Kapur P.K., Ghadge S.G., editors. Advances in Performance and Safety of Complex systems. New Delhi: Macmillan. Pp. 308-314.

14. Chacko V.M., Manoharan M. Joint Importance measures for multistate reliability system // Opsearch. 2011. Vol. 48(3). Pp. 257-278.

15. Dinic E.A. Algorithm for solution of a problem of maximum flow in a network with power estimation // Soviet Mathematics – Doklady. 1970. Vol. 11. Pp. 1277- 1280.

16. Dui H., Si S., Zuo M.J. et al. Semi-Markov processbased integrated importance measures for multi-state systems // IEEE Transactions on Reliability. 2015. Vol. 64(2). Pp. 754–765.

17. Dui H., Li S., Xing L. et al. System performancebased joint importance analysis guided maintenance for repairable systems // Reliability Engineering & System Safety. 2019. Vol. 186. Pp. 162-175.

18. Dui H., Zhang C., Zheng X. Component joint importance measures for maintenances in submarine blowout preventer system // Journal of Loss Prevention in the Process Industries. 2020. Vol. 63. Pp. 1-10.

19. Ford L.R., Fulkerson D.R. Maximal flow through a network // Canadian Journal of Mathematics. 1956. Vol. 8. Pp. 399-404.

20. FussellJ.B., Vesely W.E. A new methodology for obtaining cut sets for fault trees // Transactions of the American Nuclear Society. 1972. Vol. 15. Pp. 262 263.

21. Griffith W. Multi-state reliability models // Journal of Applied Probability. 1980. Vol. 17. Pp. 735-744.

22. Hosseini S., Barker K., Ramirez-Marquez J.E. A review of definitions and measures of system resilience // Reliability Engineering & System Safety. 2016. Vol. 145. Pp. 47-61.

23. Huseby A.B., Kalinowska K., Abrahamsen T. Birnbaum criticality and importance measures for multistate systems with repairable components // Probability in the Engineering and Informational Sciences. 2022. Vol. 36(1). Pp. 66 86.

24. HusebyA.B., Natvig B. Advanced discrete simulation methods applied to repairable multi-state systems. In: Bris R., Soares C.G., Martorell S., editors. Reliability, risk and safety. Theory and applications, Vol. 1. London: CRC Press, 2010. Pp. 659–666.

25. Huseby A.B., Natvig B. Discrete event simulation methods applied to advanced importance measures of repairable components in multistate network flow systems // Reliability Engineering & System Safety. 2012. Vol. 119. Pp. 186-198.

26. Levitin G., Lisnianski A. Importance and sensitivity analisis of multistate systems using the universal generating function // Reliability Engineering & System Safety. 1999. Vol. 65. Pp. 271-282.

27. Levitin G., Podofillini L., Zio E. Generalised importance measures for multistate elements based on performance level restrictions // Reliability Engineering & System Safety. 2003. Vol. 82. Pp. 287-298.

28. Natvig B. A suggestion for a new measure of importance of system components // Stochastic Processes and their Applications. 1979. Vol. 9. Pp. 319 330.

29. Natvig B. New light on measures of importance of system components // Scandinavian Journal of Statistics. 1985. Vol. 12. Pp. 43-54.

30. Natvig B. Measures of component importance in nonrepairable and repairable multistate strongly coherent systems // Methodology and Computing in Applied Probability. 2011. Vol. 13. Pp. 523-547.

31. Natvig B. Multistate systems reliability theory with applications. New York (USA): John Wiley and Sons, Inc., 2011.

32. Natvig B., Eide K.A., Gåsemyr J. et al. Simulation based analysis and an application to an offshore oil and gas production system of the Natvig measures of component importance in repairable systems // Reliability Engineering & System Safety. 2009. Vol. 94. Pp. 1629-1638.

33. Natvig B., Gåsemyr J. New results on the BarlowProschan and Natvig measures of component importance in nonrepairable and repairable systems // Methodology and Computing in Applied Probability. 2009. Vol. 11. Pp. 603-620.

34. Natvig B., Huseby A.B., Reistadbakk M. Measures of component importance in repairable multistate systems: a numerical study // Reliability Engineering & System Safety. 2011. Vol. 96. Pp. 1680-1690.

35. Ramirez-Marquez J.E., Coit D.W. Composite importance measures for multi-state systems with multistate components // IEEE Transactions on Reliability. 2005. Vol. 54. Pp. 517-529.

36. Ramirez-Marquez J.E., Coit D.W. Multi-state component criticality analysis for reliability improvement in multi-state systems // Reliability Engineering & System Safety. 2007. Vol. 92. Pp. 1608-1619.

37. Ramirez-Marquez J.E., Rocco C.M., Gebre B.A. et al. New insights on multi-state component criticality and importance // Reliability Engineering & System Safety. 2006. Vol. 91. Pp. 894-904.

38. Ross S. Introduction to probability models: 11th ed. San Diego (USA): Academic Press, 2014.

39. Si S., Dui H., Cai Z. et al. The integrated importance measure of multistate coherent systems for maintenance processes // IEEE Transactions on Reliability. 2012. Vol. 61(2). Pp. 266-273.

40. Si S., Dui H., Zhao X. et al. Integrated importance measure of component states based on loss of system performance // IEEE Transactions on Reliability. 2012. Vol. 61(1). Pp. 192-202.

41. Si S., Levitin G., Dui H. et al. Component state-based integrated importance measure for multi-state systems // Reliability Engineering & System Safety. 2013. Vol. 116. Pp. 75-83.

42. Si S., Liu M., Jiang Z. et al. System reliability allocation and optimization based on generalized Birnbaum importance measure // IEEE Transactions on Reliability. 2019. Vol. 68(3). Pp. 831-843.

43. Skutlaberg K., Natvig B. Minimization of the expected total net loss in a stationary multistate flow network system // Applied Mathematics. 2016. Vol. 7. Pp. 793-817.

44. Todinov M.T. Flow networks. Oxford (UK): Elsevier Insights, 2013.

45. Wu S., Coolen F. A cost-based importance measure for system components: an extension of the Birnbaum importance // European Journal of Operational Research. 2013. Vol. 225. Pp. 189-195.

46. Wu S., Chen Y., Wu Q. et al. Linking component importance to optimisation of preventive maintenance policy // Reliability Engineering & System Safety. 2016. Vol. 146. Pp. 26-32.

47. Zhu X., Fu Y., Yuan T. et al. Birnbaum importance based heuristics for multi-type component assignment problems // Reliability Engineering & System Safety. 2017. Vol. 165. Pp. 209-221.

48. Zio E., Podofillini L. Monte-Carlo simulation analysis of the effects on different system performance levels on the importance on multistate components // Reliability Engineering & System Safety. 2003. Vol. 82. Pp. 63-73.

49. Zio E., Podofillini L. Accounting for components interactions in the differential importance measure // Reliability Engineering & System Safety. 2006. Vol. 91. Pp. 1163-1174.

50. Zio E., Podofillini L., Levitin G. Estimation of the importance measures of multistate elements by Monte Carlo simulation // Reliability Engineering & System Safety. 2004. Vol. 86. Pp. 191-204.

51. Zio E., Marella M., Podofillini L. Importance measures-based prioritization for improving the performance of multi-state systems: Application to the railway industry // Reliability Engineering & System Safety. 2007. Vol. 92. Pp. 1303-1314.


Рецензия

Для цитирования:


Чако В.М., Франсон Э.С., Амрута М. Совместные меры важности Бирнбаума для трех компонентов восстановимой системы с большим числом состояний. Надежность. 2023;23(3):3-13. https://doi.org/10.21683/1729-2646-2023-23-3-3-13

For citation:


Chacko V.M., Franson A.S., Amrutha M. Birnbaum joint importance measures for three components of a repairable multistate systems. Dependability. 2023;23(3):3-13. (In Russ.) https://doi.org/10.21683/1729-2646-2023-23-3-3-13

Просмотров: 421


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1729-2646 (Print)
ISSN 2500-3909 (Online)