A methodological approach to identifying the priority of scout/attack and attack unmanned aerial vehicles
https://doi.org/10.21683/1729-2646-2020-20-4-50-60
Abstract
About the Authors
A. V. KryanevRussian Federation
Alexander V. Kryanev, Doctor of Physics and Mathematics, Professor of the Department of Applied Mathematics
Moscow
S. S. Semionov
Russian Federation
Sergey S. Semionov, Candidate of Engineering, Head of Group for Analysis and Advanced Engineering
Moscow
A. E. Kaldaeva
Russian Federation
Alla E. Kaldaeva, master student
Moscow
References
1. Balyko Yu.P., Gorchitsa G.I., Yermolin O.V. et al. Balyko Yu.P., editor. [Methodological foundations of the creation of air-launched weapons systems]. Moscow: Izdatelskotorgovaya korporatsiya “Dashkov i K”; 2012. (in Russ.)
2. Levina E.S., Vavilov D.S., Toporov N.P., Zherebin A.M. [Research of the effect of the design parameters on the conceptual characteristics of UAVs]. In: abstracts of the Anniversary National Science and Technology Conference Aviation Systems in the XXI Century (May 26-27, 2016). Moscow: SSC RF GosNIIAS; 2016. P. 30. (in Russ.)
3. Levkov V.G., Ovchinnikov D.I., Toporov N.B. et al. [Method of conceptualization of unmanned ACS intended for reconnaissance and strike missions]. In: abstracts of the Anniversary National Science and Technology Conference Aviation Systems in the XXI Century (May 26-27, 2016). Moscow: SSC RF GosNIIAS; 2016. P. 31. (in Russ.)
4. Semenov S.S. [Quality and technical level assessment of complex systems: The practice of expert assessment]. Moscow: LENAND; 2015. (in Russ.)
5. Semenov S.S., Voronov E.M., Poltavsky A.V. et al. Rubinovich E.Ya., editor. [Methods of decision-making in respect to problems of evaluation of the quality and engineering level of complex technical systems]. Moscow: LENAND; 2016. (in Russ.)
6. Platunov V.S. [Methodology of systematic military scientific research of aircraft systems]. Moscow: Delta; 2005. (in Russ.)
7. Barkovsky V.I., Skopets G.M., Smyslov V.D. [Methodology of conceptualization of export-oriented aircraft systems]. Moscow: FIZMATLIT; 2008. (in Russ.)
8. Myshkin L.V. [Predicting the development of aircraft engineering: theory and practice]. Moscow: FIZMATLIT; 2009. (in Russ.)
9. Kruglov V.I., Yershov V.I., Chumadin A.S. et al. [Methodology of scientific research on aircraft and rocket design]. Moscow: Logos; 2011. (in Russ.)
10. Apanasenko V.M., Ageishin V.I. [Algorithm of selection of a naval guided missile system with an advanced missile]. Vooruzhenie. Politika. Konversiya 2006;4:8-14. (in Russ.)
11. Nikolsky M. [Comparative analysis of Dassault Rafale and Eurofighter Typhoon]. Aviatsiya i kosmonavtika 2012;8(17):46-47. (in Russ.)
12. Beshelev S.D., Karpova I.V. [Selecting best technology with the use of expert evaluation]. Economics and Mathematical Methods 1972;VIII(1):117-121. (in Russ.)
13. Gabrelian K.A. [The problem of selection of rational type of combat aircraft systems]. Vooruzhenie. Politika. Konversiya 2002;3:22-25. (in Russ.)
14. Gabrelian K.A. [Selection and construction of the mathematical model as part performance evaluation of a combat aircraft system]. Vooruzhenie. Politika. Konversiya 2002;4:29-32. (in Russ.)
15. Gabrelian K.A. [Method of selecting rational airborne armament configurations using decision theory]. Vooruzhenie. Politika. Konversiya 2003;3:25-27. (in Russ.)
16. Andreev A.Yu., Karpachiov I.A., Pliaskota S.I. [The expert method of selection of primary elements of military technical systems and items based on the generalized criteria of “quality” and “cost”]. Vooruzhenie. Politika. Konversiya 2009;6:23-27. (in Russ.)
17. Semenov S.S., Shcherbinin V.V. [Assessing the engineering level of guided bomb targeting systems]. Moscow: Mashinostroenie; 2015. (in Russ.)
18. Zheltov S.Yu. [State of the art and future development of aircraft system simulation technology]. In: proceedings of the Anniversary National Science and Technology Conference Aviation Systems in the XXI Century (May 26-27, 2016). Volume 1. Moscow: SSC RF GosNIIAS; 2017. P. 9-30. (in Russ.)
19. Romanov A.A. [Applied system engineering]. Moscow: Fizmatlit; 2015. (in Russ.)
20. Kryanev A.V., Lukin G.V., Udumyan D.K. [Metrical analysis and data processing]. Moscow: Fizmatlit; 2012. (in Russ.)
21. Kryanev A.V., Ivanov V.V., Sevastianov L.A. et al. A review of metric analysis applications to the problems of interpolating, filtering and predicting the values of onevariable and multivariable functions. Communications in Computer and Information Science 2018;919:457-468.
22. Kryanev A., Ivanov V., Romanova A. et al. Extrapolation of Functions of Many Variables by Means of Metric Analysis. EPJ Web of Conferences 2018;173.
23. Poltavsky A.V., Burba A.A., Lapsakov O.A. et al. Maksimov A.N., editor. [Combat unmanned aerial vehicles. Part 1. System characteristic of combat unmanned aerial vehicles. A research and methodology paper]. Moscow: Zhukovsky Air Force Engineering Academy; 2005. (in Russ.)
24. Shibaev V., Shnyrev A., Bunia V. [Unmanned aircraft systems: flight safety and critical factors]. Aerokosmicheskiy kurier 2011;1(73):55-57. (in Russ.)
25. Koshkin R.P. [Unmanned aircraft systems]. Moscow: Strategicheskie prioritety; 2016. (in Russ.)
26. Nikolsky M. [Russian fixed-wing strike UAVs]. Aerokosmicheskoe obozrenie 2018;4:14-19. (in Russ.)
27. Golubev S.I. [Commensuration of the engineering level and efficiency as part of aircraft structural design]. Moscow: MAI Publishing; 1986. (in Russ.)
Review
For citations:
Kryanev A.V., Semionov S.S., Kaldaeva A.E. A methodological approach to identifying the priority of scout/attack and attack unmanned aerial vehicles. Dependability. 2020;20(4):50-60. https://doi.org/10.21683/1729-2646-2020-20-4-50-60