On safety assessment of artificial intelligence
https://doi.org/10.21683/1729-2646-2020-20-4-25-34
Abstract
About the Authors
Jens BrabandGermany
Jens Braband, Dr. rer. nat., Principal Key Expert for RAMSS at Siemens Mobility GmbH, and Honorary Professor, TU Braunschweig
Braunschweig
Hendrik Schäbe
Germany
Hendrik Schäbe, Dr. rer. nat. habil., Chief Expert on Reliability, Operational Availability, Maintainability and Safety
Cologne
References
1. Anscombe F.J. Graphs in Statistical Analysis // American Statistician. 1973. 27(1). P. 17–21.
2. Braband J., Gall H., Schäbe H. Proven in Use for Software: Assigning an SIL Based on Statistics / Mahboob Q., Zio E., editors. Handbook of RAMS in Railway systems – Theory and Practice. Boca Raton, Taylor and Francis. 2018.
3. Brunette E.S., Flemmer R.C., Flemmer C.L. A review of artificial intelligence // Proc. 4th International Conference on Autonomous Robots and Agents. Feb. Wellington. 2009. P. 385-392.
4. Chen S.H., Jakeman A.J., Norton J.P. Artificial Intelligence techniques: An introduction to their use for modelling environmental systems // Mathematics and Simulation. 2008. Vol. 78. P. 379-400.
5. Corni M. Is Artificial Intelligence Racist? (And Other Concerns). URL : https://towardsdatascience.com/is-artificial-intelligence-racist-and-other-concerns817fa60d75e9 [accessed October 25, 2018].
6. Cybenko G. Approximations by superpositions of sigmoidal functions // Mathematics of Control, Signals, and Systems. 1989. № 2(4). P. 303–314.
7. Hättasch N., Geisler N. The Deep Learning Hype: Presentation at 36C3. 2019. URL: https://www.youtube.com/watch?v=FomrN5XHQhY.
8. EN 50128. Railway applications – Communication, signalling and processing systems – Software for railway control and protection systems; 2011.
9. EN 50129. Railway applications – Communication, signalling and processing systems – Software for railway control and protection systems; 2018.
10. IEC 61508. Functional safety of electrical/electronic/ programmable electronic safety-related systems; 2010.
11. Ivanov A.I., Kuprianov E.N., Tureev S.V. Neural network integration of classical statistical tests for processing small samples of biometrics data // Dependability. 2019. № 19(2). P. 22-27.
12. Pearl J., Mackenzie D. The Book of Why. Penguin Science, 2018.
13. Putzer H. Ein strukturierter Ansatz für funktional sichere KI. Presentation at DKE Funktionale Sicherheit. Erfurt; 2019. (in Ger.)
14. Schäbe H. SIL Apportionment and SIL Allocation. / Mahboob Q., Zio E., editors. Handbook of RAMS in Railway systems – Theory and Practice. Boca Raton, Taylor and Francis. 2018. P. 69-78.
15. Underwriter Laboratories: Standard for Safety for the Evaluation of Autonomous Products. Draft UL 4600; 2019.
16. Wang J., Ma Y., Zhang L., et al. Deep learning for smart manufacturing: Methods and Applications // Journal of Manufacturing Systems. 2017. № 48. P. 144-156.
17. Wigger P. Independent Safety Assessment – Process and Methodology / Mahboob Q., Zio E., editors. Handbook of RAMS in Railway systems – Theory and Practice. Boca Raton, Taylor and Francis. 2018. P. 475-485.
Review
For citations:
Braband J., Schäbe H. On safety assessment of artificial intelligence. Dependability. 2020;20(4):25-34. https://doi.org/10.21683/1729-2646-2020-20-4-25-34