Preview

Надежность

Расширенный поиск

Прогнозирование надежности энергетической системы и продолжительности сбоев, включая нештатные ситуации

https://doi.org/10.21683/1729-2646-2020-20-3-3-14

Полный текст:

Аннотация

Резюме. Цель. Обеспечить прогнозирование и планирование крупномасштабных беспрецедентных случаев отключения электроэнергии, имеющих значение для аварийного планирования и национальной системы реагирования. Прогнозирование вероятности, продолжительности и восстановления сбоев, основанное на теории, которая может применяться на глобальном уровне. Были собраны данные об отключениях электропитания и продолжительности сбоев для целого ряда событий в Бельгии, Канаде, Ирландии, Франции, Японии, Швеции, Новой Зеландии и США. Представлена новая теория и корреляция для вероятности крупных региональных отключений электроэнергии размером едва ли не до 50 000 МВт(э) без дополнительных повреждений инфраструктуры или энергосети. В случае серьезных и редких событий с повреждениями (крупные наводнения, пожары, снежные бури, ураганы и т.д.) сбои являются более продолжительными, и вероятность восстановления зависит от степени сложности, которая ограничивает доступ и возможность восстановления. Получены требования динамической надежности для аварийных резервных источников питания и насосных систем на примерах наводнения в Новом Орлеане из-за урагана «Катрина» и затопления ядерных реакторов Фукусима в результате цунами. Выводы. Были получены и подтверждены эксплицитные выражения вероятности и продолжительности всего диапазона сбоев: от «нормальных» крупных отключений электроэнергии до продолжительных отключений из-за редких и более серьезных событий с затруднениями доступа и ремонта.

Об авторе

Р. Б. Даффи

Соединённые Штаты Америки

Ромни Б. Даффи – доктор философии, бакалавр, бывший председатель подразделения атомной энергетики Американского общества инженеров-механиков Айдахо

Айдахо-Фолс



Список литературы

1. Surviving a catastrophic power outage, President’s National Infrastructure Advisory Council, Washington, DC. NIAC, 2018. URL: www.dhs.gov/national-infrastructureadvisory-council

2. Reliability Standards for the Bulk Electric Systems of North America, BAL-001-2 Updated June 23 National Electricity Reliability Council, Atlanta , Georgia. NERC, 2020. URL: www.nerc.com/pa/Stand/Reliability Standards Complete Set/RSCompleteSet.pdf

3. Power Outage Incident Annex (POIA) to the Response and Recovery Federal Interagency Operational Plans, Managing the Cascading Impacts from a Long-Term Power Outage, US Department of Homeland Security, Final, June 2017. URL: www.fema.gov/media-library-data/ POIA_Final_7 2017v2.508.pdf

4. Duffey R.B. Power restoration prediction following extreme events and disasters // Int. J. Disaster Risk Science. Springer, 2019. 10(1). P. 134-148.

5. Strengthening the cyber security of Federal networks and critical infrastructure / Section 2(e): Assessment of Electricity Disruption Incident Response Capabilities. August 9. U.S. Department of Homeland Security (DHS), 2018. URL: www.dhs.gov/sites/default/files/publications/ EO13800-electricity-subsector-report.pdf

6. Rushbrooke G.S. Introduction to Statistical Mechanics. Oxford University Press, London, 1949.

7. Greiner W., Neise L., Stocker H. Thermodynamics and Statistical Mechanics. Springer, NY, 1995.

8. Jaynes E.T. Probability Theory: the logic of science / Ed. G.L. Bretthorst. Cambridge University Press, 2003.

9. Duffey R.B., Saull J.W. Managing Risk. J. Wiley and Sons, 2008.

10. Duffey R.B., Ha T. The probability and timing of power system restoration. // IEEE Trans Power Systems. 2013. 28. P. 3-9. DOI 10: 1109/TPWRS.2012.2203832

11. Managing and Reducing Social Vulnerabilities From Coupled Critical Infrastructures. / White paper #3: Figure 5, p. 28. IRGC, Geneva, Switzerland, 2006.

12. MurphyS., AptJ., Moura J. et al. Resource adequacy risks to the bulk power system of North America // Applied Energy. 2017. 212. P. 1360-1376. DOI: 10.1016/j.apenergy.2017.12.097

13. Kearsley R., 1987, Restoration in Sweden and experience gained from the blackout of 1983 // IEEE Trans. Power Syst. 1987. Vol. 2. No. 2. P. 422–428.

14. US ACE (US Army Corps of Engineers), 2006, Perfor mance evaluation of the New Orleans and Southeast Louisiana hurricane protection system. / Volumes I to VIII, Engineering and Operational Risk and Reliability Analysis, Interagency Per formance Evaluation Task Force. US ACE, 2006. URL: usace. contentdm.oclc.org/digital/collection/p266001coll1/id/2844/

15. Duffey R.B. The Risk of Extended Power Loss and the Probability of Emergency Restoration for Severe Events and Nuclear Accidents. // J. Nuc Eng Rad Sci. 2019. July, NERS-18-1122. DOI: 10.1115/1.4042970

16. Barr J., Basu S., Esmaili H. et al. Technical Basis for the Containment Protection and Release Reduction Rulemaking for BWRs with Mark I and Mark II containments / U.S. NRC Report NUREG-2206. Washington, DC, 2018.

17. Lewis E.E. Introduction to Reliability Engineering / 2nd edition. John Wiley and Sons, New York, 1994.

18. Duffey R.B. Critical Infrastructure: the probability and duration of national and regional power outages. // RT&A. 2020. 15. 2(57). P. 62-71.

19. Lee R.M., Assante M.J., Conway T. Analysis of the Cyber Attack on the Ukrainian Power Grid: Defense Use Case. / E-ISAC Report, Electricity Information Sharing and Analysis Center, Industrial Control Systems. Washington, DC, 2016. URL: ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf

20. Eide S.A., Gentillon C.D., Wierman T.E. et al. Reevaluation of Station Blackout Risk at Nuclear Power Plants: Analysis of Loss of Offsite Power Events: 1986-2004 / NRC Report No. NUREG-CR6890, Nuclear Regulatory Commission. Washington, DC, 2005.

21. Ma Z., Parisis C., Zhang H. et al. Plant-Level Scenario-Based Risk Analysis for Enhanced Resilient PWR – SBO and LBLOCA / Report INL/EXT-18-51436, Idaho National Laboratory. US DoE, 2018.

22. Fukushima Nuclear Accident Analysis Report / Tokyo Electric Power Company, Tokyo, Japan. TEPCO, 2012; Japanese Government Report to IAEA Ministerial Conference on Nuclear Safety, Vienna, Austria.

23. Forging a New Safety Construct / American Society of Mechanical Engineers, Presidential Task Force Report. New York, ASME, 2012.

24. Espinoza S., Panteli M., Mancarella P. et al. Multiphase assessment and adaptation of power systems resilience to natural hazards // Electric Power Systems Research. 2016. 136. P. 352-361. DOI: 10.1016/j.epsr.2016.03.019

25. Sandoval C.E., Raynal-Villaseñor J. Trivariate generalized extreme value distribution in flood frequency analysis // Journal Hydrological Sciences. 2008. 53:3. P. 550-567. DOI: 10.1623/hysj.53.3.550

26. Zio E. Challenges in the vulnerability and risk analysis of critical infrastructures // Reliability Engineering and System Safety. 2016. DOI: 10.1016/j.ress.2016.02.009


Для цитирования:


Даффи Р.Б. Прогнозирование надежности энергетической системы и продолжительности сбоев, включая нештатные ситуации. Надежность. 2020;20(3):3-14. https://doi.org/10.21683/1729-2646-2020-20-3-3-14

For citation:


Duffey R.B. Predicting power system reliability and outage duration including emergency response. Dependability. 2020;20(3):3-14. https://doi.org/10.21683/1729-2646-2020-20-3-3-14

Просмотров: 49


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1729-2646 (Print)
ISSN 2500-3909 (Online)