Development of algorithms of self-organizing network for reliable data exchange between autonomous robots
https://doi.org/10.21683/1729-2646-2020-20-2-35-42
Abstract
About the Authors
A. V. ErmakovRussian Federation
Alexander V. Ermakov, post-graduate student, IT and Information Security Department
656038, Altai Krai, Barnaul, 46 Lenina Ave., Administration of Information and Telecommunication Support, Information Systems Development Unit, k.a. of Ermakov A.V.
L. I. Suchkova
Russian Federation
Larisa I. Suchkova, Doctor of Engineering, Prorector for Learning and Teaching
656038, Altai Krai, Barnaul, 46 Lenina Ave., k.a. of Suchkova L.I., Prorector for Learning and Teaching
References
1. Lavrov D.N. Principles of building a protocol for guaranteed message delivery. Mathematical structures and modeling. 2018;4(48):139-146. DOI: 10.25513/22228772.2018.4.139-146. (in Russ.)
2. Guss S.V., Lavrov D.N. Approaches to implementing a secure delivery network protocol for multipath data transfer. Mathematical structures and modeling. 2018;2(46):95-101. DOI: 10.25513/2222-8772.2018.2.95-101. (in Russ.)
3. Sorokin A.A., Dmitriev V.N. Description of communication systems with dynamic network topology by means of model “flickering” graph. Vestnik of Astrakhan State Technical University. Series: management, computer science and informatics. 2009;2:134-139. (in Russ.)
4. Parker L.E. Distributed Intelligence: Overview of the Field and its Application in Multi-Robot Systems. AAAI Fall Symposium: Technical Report, FS-07-06. 2008:5–14. DOI: 10.14198/JoPha.2008.2.1.02.
5. Ota J. Multi-agent robot systems as distributed autonomous systems. Advanced engineering informatics. 2006;20(1):59-70. DOI: 10.1016/j.aei.2005.06.002.
6. Arai T. et al. Advances in multi-robot systems. IEEE Transactions on robotics and automation. 2002;18(5):655–661.
7. Krieger M.J.B., Billeter J.B., Keller L. Ant-like task allocation and recruitment in cooperative robots. Nature. 2000;406(6799):992–995. DOI: 10.1038/35023164.
8. Winfield A.F.T., Nembrini J. Safety in numbers: Fault tolerance in robot swarms. International Journal on Modelling Identification and Control. 2006;1:30–37. DOI: 10.1504/IJMIC.2006.008645.
9. Bicket J. et al. Architecture and evaluation of an unplanned 802.11 b mesh network. Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM. ACM; 2005:31–42. DOI: 10.1145/1080829.1080833.
10. Srinivasan S. Design and use of managed overlay networks. Georgia Institute of Technology; 2007.
11. Clark D. et al. Overlay Networks and the Future of the Internet. Communications and Strategies. 2006;63:109.
12. Benson K.E. et al. Resilient overlays for IoT-based community infrastructure communications. 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI). 2016:152–163. DOI: 10.1109/IoTDI.2015.40.
13. Stoica I. et al. Internet indirection infrastructure. ACM SIGCOMM Computer Communication Review. ACM. 2002;3(4):73–86.
14. Ripeanu M. Peer-to-peer architecture case study: Gnutella network. Proceedings first international conference on peer-to-peer computing. IEEE. 2001:99–100. DOI: 10.1109/P2P.2001.990433.
15. Leibowitz N., Ripeanu M., Wierzbicki A. Deconstructing the kazaa network. Proceedings the Third IEEE Workshop on Internet Applications. WIAPP. 2003:112–120. DOI: 10.1109/WIAPP.2003.1210295.
16. Dingledine R., Mathewson N., Syverson P. Tor: The second-generation onion router. Naval Research Lab Washington DC; 2004.
17. Herrmann M., Grothoff C. Privacy-implications of performance-based peer selection by onion-routers: a real-world case study using I2P. International Symposium on Privacy Enhancing Technologies Symposium. Berlin, Heidelberg: Springer. 2011:155–174. DOI: 10.1007/9783-642-22263-4_9.
18. Tandon N., Patel N. K. An Efficient Implementation of Multichannel Transceiver for Manet Multinet Environment. 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE. 2019:1–6. DOI: 10.1109/ICCCNT45670.2019.8944505.
19. Kudriashova E.E., Vovchenko A.V., Oleynikov R.O. [A study of the NЕТSUКUКU fractal set-based network]. Vestnik Mezhdunarodnoy akademii sistemnykh issledovaniy. Informatika, ekologiya, ekonomika. 2008. 11(1):55-57. (in Russ.)
20. Kumar A. et al. Ulysses: a robust, low-diameter, lowlatency peer-to-peer network. European transactions on telecommunications. 2004. 15(6):571–587. DOI: 10.1002/ett.1013.
21. Rowstron A., Druschel P. Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. IFIP/ACM International Conference on Distributed Systems Platforms and Open Distributed Processing. Berlin, Heidelberg: Springer; 2001.
22. Stoica I. et al. Chord: A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM Computer Communication Review. 2001. 31(4):149–160.
23. Feng J., Li J. Google protocol buffers research and application in online game. IEEE conference anthology. 2013:1–4. DOI: 10.1109/ANTHOLOGY.2013.6784954.
24. Ermakova A.V., Suchkova L.I. [Implementation of the data communication protocol between smart autonomous robots]. Certificate of official registration of computer software no. 2019666759 of December 13, 2019.
25. Ermakov A.V., Suchkova L.I. Designing a network communication environment for the implementation of the management system in the autonomous robots team. South-Siberian Scientific Bulletin. 2019;2(4):28–31. DOI: 10.25699/SSSB.2019.28.48969.
26. Ermakov A., Suchkova L. Development of Data Exchange Technology for Autonomous Robots Using a Self-Organizing Overlay Network. 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE. 2019:1–5. DOI: 10.1109/FarEastCon.2019.8934727.
27. Polovko А.М., Gurov S.V. [Introduction into the dependability theory: study guide: second edition, updated and revised]. Saint Petersburg: BHV-Peterburg; 2006. ISBN 5-94157-541-6. (in Russ.)
Review
For citations:
Ermakov A.V., Suchkova L.I. Development of algorithms of self-organizing network for reliable data exchange between autonomous robots. Dependability. 2020;20(2):35-42. https://doi.org/10.21683/1729-2646-2020-20-2-35-42