
10

Structural reliability. The theory and practice

Chumakov I.A., Chepurko V.A., Antonov A.V.

ON SOME PROPERTIES OF KIJIMA INCOMPLETE 
RECOVERY MODELS

The article analyses some properties of Kijima incomplete recovery models using a Weibull distribution for 
time to first failure. The maximum likelihood method is used for assessment of distribution parameters and 
recovery coefficient. Confidence limits have been identified using a Fisher information matrix. The authors 
consider cases of processing data from several identical elements and prove the inverse relationship 
between the deviation value and the number of elements. The paper examines two ways of assessing the 
leading function of the deteriorating component flow. A comparison is made between the new approach that 
represents the leading function of the flow as the ultimate sum and the approach that uses the statistical 
testing method. The paper suggests the method of calculation of the average direct time and reverse 
residual time based on the statistical testing method. Several demonstration examples are given.
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Introduction
Models that involve complete or minimal recovery are the most commonly used in depend-

ability calculation of recoverable systems. Technical systems, as a rule, normally function in a 
more complex manner with incomplete (partial) recovery. Models that take into consideration 
incomplete recovery are becoming more and more popular. That includes the Kijima models 
that are covered in this paper. 

1. Extended recovery process, Kijima models
In case of immediate recovery the real age of an element at the moment of the n-th recovery 

can be represented as the sum of all of its times to failure:

where Xi is the time to the i-th failure.
Let us introduce a certain constant value q that is called a recovery coefficient (factor). We 

will define the virtual age of an element as a certain function v such that v = v({X}, q). The 
virtual age and distribution of time to failure are related by the following formula: let vi-1 be 
the virtual age of the element at the moment of the (i – 1)-th recovery. Then, random value Xi 
has the following conventional distribution function [1, 2]:

                                            
 (1)

where F(x) is the function of distribution of time to first failure (TFF) for an absolutely 
new element. 
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The Kijima-1 model implies that the n-th recovery af-
fects only the damage received by an element between the 
(n – 1)-th and the n-th failures reducing the element’s virtual 
age increment from Xi to qXi. An element’s virtual age after 
the n-th recovery can be written as follows:

 
 (2)

The Kijima-2 model implies that each recovery affects 
the total damage, thus reducing the total virtual age:

  (3)

Therefore, the TFF distribution and coefficient q com-
pletely define the Kijima models recovery processes. Among 
others, according to [2, 3, 4] the case of q = 0 describes a 
complete recovery, the case of q = 1 describes a minimal 
recovery, the case of 0 < q < 1 describes incomplete recovery 
“worse than new but better than before the failure”. Model 
parameters can be evaluated in a number of ways.

2. Parametric evaluation of model 
parameters 

2.1 Method of maximum likelihood

Let us consider the approach based on the method of maxi-
mum likelihood (MML) [1, 5]. Here and further the assumption 
is that the TFF has a Weibull distribution. The function of this 
distribution has various notations. In this paper, the following 
form is used in order to simplify further calculations:

  (4)

For (1) subject to (4) the log-likelihood function (LLF) 
is known [4]:

 

 (5)

where vi depend on q as (2) or (3). 
Estimation л, в, q can be derived by means of numerical 

techniques [1, 5]. 
Then let us assume that under observation are simultane-

ously k absolutely identical recoverable elements. In this 
case we assume that the i-th failure times have identical 
distributions for each element. Let us write LLT as in (5), yet 
taking into consideration k samples of failure times [3]:

 . (6)

Function (6) allows finding parameter estimations as in (5).

2.2 Error estimation of the method 
of maximum likelihood

In order to find the MML estimation variance, we must 
use a Fisher information matrix [6, page 201]. Let us write 
the parameter vector (л, в, q) as (и1, и2, и3). The elements of 
a Fisher information matrix are calculated as follows:

.

Estimate valiances are calculated by covariance matrix 
V = I-1, while D(иi)=V(i,i). For LLT (6) of k observed iden-
tical elements it is possible to similarly calculate elements 
Ik(i,j) of the Fisher matrix Ik, then to find the respective 
variance Dk(иi).

Any j-th of the observed k elements has the number of 
failures nj with identical distribution and mathematical 
expectation (ME):

.

For the i-th time to failure of the j-th element Xj,i and 
respective virtual age of vj,i-1 we deduce:

.

Also note that the times before failure of the first ele-
ment X1,i do not depend on the times before failure of the 
second element X2,i, third, etc. for any i. Let us examine the 
elements of the matrix Ik constructed for (6) and compare 
them with the elements of the matrix I1 constructed for one 
element using (5):

Similarly, for all the other elements Ik(i,j) = kI1(i,j), from 
where we deduce the variance:

The results indicate that in statistical terms the estimate 
variance is negatively related to the number of observed 
identical elements. In other words, estimate variance per k 
samples of the same size will be k times smaller than the 
estimate variance per a single sample. It should be noted 
that Kijima processes are not homogenous, therefore this 
property does not follow from the definition of the proc-
esses themselves. 
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3. Estimation of the leading function 
of the stream based on sum total 
calculation

The ME of the mean failures per interval (0; t] is also 
known as the recovery function, leading function of the 
flow (LFF). For the case of incomplete recovery this value 
is defined with an integral equation that is impossible to 
solve analytically, while even the computational solution 
is complicated [2]. By definition, LFF can be represented 
as an infinite sum [7, стр.88]:

 
 (7)

where Gi(x) is the distribution function of the time point 
of the i-th failure of Si. 

Unlike distribution (1), Gi(x) is an unconditional distribution. 
Let us find Gi(x). In order to do that let us consider Si as a sum 
of random values Si-1 and Xi, where Xi is the i-th time to failure. 
Next, let us find the distribution function of this sum:

 (8)

Let us transform (8) in order to make it suitable for 
calculations:

 
 (9)

In case of a Weibull distribution the last equation changes to:

,

where d = x + y(q – 1).
Equation (9) defines the recurrent dependence between 

the distribution functions of failure time points. Knowing the 
TFF distribution (4) we can calculate a certain sum total of 
the distribution function. A similar recurrence equation was 
deduced for distribution density of the i-th time to failure:

In case of a Weibull distribution the equation Q(x,y) 
changes to:

Out of (7) we can find the value of LFF with a certain 
error that decreases as i increases.

4. Evaluation by means of statistical tests

4.1 Modeling of times to failure

Assuming that the distribution parameters and recovery 
coefficients of the Kijima models known, it becomes pos-
sible to model Kijima processes (2) and (3). The TFF dis-
tribution function is found as (1). Out of [4] we will deduce 
the formula for the i-th time to failure:

 . (10)

For modelling, U~U[0;1] must be played.

4.2 Estimation of the leading function 
of the flow

In case of incomplete recovery, a popular way of calculat-
ing LFF is the method of statistical tests that, among others, 
is suitable for evaluation prediction in the future. In order to 
evaluate LFF in point t, it is required to play a sequence of 
random values, times to failure. Nj is the number of failures 
that occurred within time t, i.e. the value of LFF. Then, 
modeling is repeated the required number of times S. The 
final estimate of LFF HМ(t) is calculated as the mean of the 
modeled values [5]:

 
. (11)

4.3 Estimation of the average direct time 
and reverse residual time

The average direct residual time (ADRT) [7] is the ME of 
the remaining time of facility operation till the next failure 
from the time point t when the system was operable. 

The average reverse residual time (ARRT) is the ME of 
facility operation time from the beginning of operation or last 
recovery till the time point t when the system is operable.

Those life characteristics are calculated only for recover-
able elements. Similarly to LFF, a direct calculation of ARRT 
and ARRT for Kijima models is not a trivial task, therefore 
the authors propose an approach based on statistical testing. 
In order to evaluate ADRT and ARRT in point t, it is required 
to play a sequence of random values , times to failure {Xn}, 
that corresponds to the sequence of failure points {Tn} such 
that Tn-1 < t ≤ Tn as shown in Figure 1.

Estimates of ADRT V(t) and ARRT R(t) are calculated as 
the average of the modeled values:
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 (12)

 
. (13)

Item 6 below will list the results of calculations using 
those formulas.

4.4. Evaluation of calculation errors 
by means of statistical tests

As it is known, the method of statistical testing enables 
error evaluation that only has a certain degree of confidence. 
According to [8, page 234] and CLT we deduce the upper 
limit of error for (11) with confidence coefficient в:

  (14)

where tв is the value of argument of Laplace’s function 
Ф(t) wherein Ф(t) = в/2.

is the unbiased estimator of variance of estimate HM.

5. Investigation of the existence of the 
accumulation point of the Kijima 
process

5.1 Divergence of failure points sequence 
for minimal recovery

For some incomplete recovery models the sequence of 
mathematical expectations (ME) of time points of the i-th 
failure M(Sn) can converge, i.e. have a limit under i → ∞. 
In particular, for a geometrical process, a sequence of non-
negative independent random values {Дn; n = 1, 2…} such 
that the following equation for distribution [9, page 81] is 
correct:

the following is correct:

where MД is the ME of the first time to failure; г > 0 is 
the denominator (parameter) of the geometrical process.

Let us prove the absence of convergence of the ME of 
the sequence failure points for Kijima models for a Weibull 
distribution. Let us consider the special case q = 1. Formula 
(9) changes to: 

First, let us note:

 

 etc.

Out of there we deduce a non-recurrent explicit expres-
sion for (9):

.

Let us find the ME of the i-th failure point:

the unknown ME is as follows:

 
 (15)

where C = const; G is a gamma function.
For j > 3 according to the properties of the gamma func-

tion the following is correct:

Therefore, the sequence (15) diverges, in other words:

Fig. 1. Modeling of failure points for calculation  
of residual time
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. (16)

I.e. for the specific case q = 1, the sequence of the MEs 
of failure points diverges under Weibull distribution for TFF 
and Kijima-1 and Kijima-2 models.

5.2 Divergence of failure points 
for incomplete recovery

Taking into consideration (2) and (3), for Kijima models 
the following is correct: the virtual age increases monoto-
nously as the parameter q increases, other things equal for 
model Kijima-1 we have:

.

In general, if q1 < q2, then:

  (17)

Next, we examine the conditional distribution function (1):

Under Weibull distribution (4) for TFF, the function 
changes to:

Under fixed x this function monotonously increases as v 
increases, in other words, if v*

i-1 < v**
i-1, then:

.

Under (17), if q1 < q2, then the following inequation is 
correct:

Whereas:

 , 

it follows whence:

out of which based on the ME property we get the inequa-
tion for the unconditional mean:

 
 (18)

Subject to (16) and (18), we come to the following 
conclusion: if this sequence diverges under q = 1, then this 
sequence is also diverging under q∈[0; 1] other things equal. 
Therefore, the sequence of the MEs of time points of the ith 

failure of the Kijima-1 and Kijima-2 models and Weibull 
distribution for TFF diverge at q∈[0; 1].

6. Example of calculation

Let us try out the above examined models with real data. 
For that purpose let us use the information on the failures of 
information collection and processing devices operating as part 
of standard equipment of nuclear power plants. For two selected 
devices over the time T≈8Ч104 h, 121 failure was registered. 
The value of LLT (6), parameter estimates and confidential 
intervals for probability belief 0.95 are given in table 1:

Given the LLT values, the Kijima-1 model should be 
chosen for further research, as it has the highest LLT out 
of the compared models. Large confidential intervals of 
estimates are explained by the insufficient amount of input 
data. Point estimation of LLT values is given in Figure 2 
with the following designations: 

           
а)                                                                                                b)

Fig. 2. Estimation of LLT by means of а) statistical testing and b) sum total method
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HC(t) is the graduated empirical LLT:

HМ(t) is the LLT for Kijima-1 model by means of statisti-
cal testing using formula (11); 

HК(t) is the LLT for Kijima-1 model by means of the sum 
total method using formulas (7) and (9);

Figure 2 shows that the compared methods yield practi-
cally identical results. LLT estimates HМ(t) and HК(t) cor-
respond well with the experimental data, the function HC(t), 
and are suitable for forecasting.

Interval estimations of the residual time are given in 
figure 3 with еhe following designation: 

V(t) is the ADRT estimate for Kijima-1 model using 
formulas (12) and (14); 

R(t) is the ARRT estimate for Kijima-1 model using 
formulas (13) and (14); 

As the graph shows, the ADRT and ARRT estimates con-
stantly decrease and within the observed period of time do 
not have an asymptotic limited value, which, among other 
things, indicates the absence of steady mode within the ob-
served interval, progressive degradation of its characteristics 
and presence of incomplete recovery.

Conclusion

Kijima models allow taking into consideration incomplete 
recoveries “worse than new but better than before the failure”. 
The article analyses the method of obtaining interval estima-
tions of Kijima models parameters using Weibull distribution 
for time to first failure. The negative relation of the variance 
value and the number of observed elements is proven. The 
divergence of sequence of mathematical expectations of time 
point of the i-th failure for Kijima models is proven.

A method of point estimation of the leading function 
of the stream based on sum total calculation is suggested. 
Also, the authors suggest using the statistical test method 
for evaluation of the average direct time and reverse residual 
time for Kijima models. The paper puts forward evaluations 
of dependability characteristics based on operation data of 
information collection and processing devices as part of 
standard equipment of nuclear power plants.
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а)                                                                                                  b)

Fig. 3. Estimation of the average а) direct and b) reverse residual times

Table 1. Model parameters evaluation

Model ln L λ β q Δλ Δβ Δq
Kijima 1 -135.353 0.264 1.345 0.384 0.186 0.196 0.574
Kijima 2 -135.707 0.244 1.293 1.000 0.192 0.172 0.043


