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Use of deduced Esary-Proschan assessments 
for evaluation of system dependability
Alexander G. Labutin, Moscow Technical University of Communication and Informatics, Russia, Moscow
Boris P. Filin, Russia, Moscow

...When you can measure what you are speaking about, 
and express it in numbers, you know something about it; 
but when you cannot measure it, when you cannot ex-
press it in numbers, your knowledge is of a meagre and 
unsatisfactory kind... 

William Thomson (Lord Kelvin)

Abstract. In [1-2] it is shown that the widely known Esary-Proschan assessments [3-6] (EPA) 
are NP-complete [7]. In the process of their calculation a mutual cross-over of those assess-
ments occurs despite the fact that the procedure of enumeration of complete sets of simple 
chains (SChs) and simple cuts (SCus) is performed all the way. This is confirmed by special 
research of these paradoxical phenomena in EPA conducted in [8] that concludes that EPAs 
are not assessments, as assessments cannot be NP-complete. In [7] it is clearly stated that in 
general an enumeration of a complete set of SCh (or SCu) alone already is an NP-complete 
problem. It implies directly that any NP-complete method cannot be an assessment one. In 
[9-10] a number of problems are classified depending on the associated computational com-
plexity. As we can see out of those presented the most favourable is the intellectual inten-
sity, as it allows controlling the computational process in the most desirable way, i.e. allows 
implementing the forced interruption principle (FIP) in regards to the computational proce-
dure that is assessed by a certain parameter. For example, the parameter of achieved relative 
computational error. It should be noted that the devices, mechanisms and other systems we 
deal with in real life are called automated because such man-machine systems implement the 
FIP at the discretion of the human operator. We deal much less with automatic systems. The 
aim of this paper is to set forth the formal rules that allows quite easily the conventional NP-
complete Esary-Proschan assessments to be transformed to the class of intelligent (IN-class) 
assessment methods that implement the FIP. Complete sets of SCh and SCu do not need to 
be enumerated here. Expanding the class of existing [1-6, 8, 11-29] methods that in one way 
or another implement the FIP is without a doubt a relevant problem for experts involved in 
structural dependability analysis of complex systems. It is an axiom that any of the tools of such 
system analysis, of which the exhaustive events (EE) are the “delivery nurse”, contributes to 
the design of structurally dependent systems, while developing at the same time the analysis 
tool system itself. Essentially, the problem consists in casting the classic EPAs in the form of 
logic symbol multiplication (LSM) of logical operands the method uses. The result consists in 
the fact that we remove the “hardships” of NP-completeness from the classic EPAs and obtain 
a sufficiently efficient analysis tool.
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1. Introduction

In [9–10] a number of problems are classified depending 
on the associated computational complexity: a) linear; b) 
polynomial; c) exponential; d) N-factorial; e) intellectual 
intensity (IN). Among experts involved in structural de-
pendability analysis of complex systems the last one has the 
following definition: intellectual intensity is the principle of 
forced interruption of the computation process by a human 
being, when he is satisfied with the achieved error of func-
tion estimation by the given period time. As EPA contains 
logic multiplication of logical operands, describing the state 
of SCh and SCu excluding their structural interdependency, 
this article includes LSM developed rules of such operands 
taking into account this dependency. As a result, classic 
EPAs in computational complexity transform into N-class, 
as they become forcibly interruptible. 

The article proposes formal rules that allow the con-
ventional NP-complete Esary-Proschan assessments to be 
transformed to the convenient tool, excluding enumeration 
of complete sets of SCh and SCu. Let us name such assess-
ments as reduced EPA. 

2. Problem definition

2.1. Generalities. Let it be a simple edge random graph 
(RG) (Fig. 1) [11–14, 30–31] G: simple excludes loops, 
parallels and isolated nodes; random means that its ele-
ments are either present in the graph with probability of p 
or absent with probability of q = 1 – p (as p + q = 1, then 
presence and absence of the edge in the graph compose EE 
denoted as symbol I [31]); edge means that only edges are 
unreliable in the graph (this assumption is not essential, but 
simplifies the paradigm of the statement). Graph G contains 
a node set V={vi} with the power mv=|V| and edges L={li,j} 
with the power mL|L|, where the function of incidence and 
type adjacency Ф(li,j)=vi&vj reflects their interdependence: an 
edge is incident to its boundary couple nodes (BCN) where 
BCN are adjacent to each other by the edge li,j.

Let us assume two-pole network (TPN) be set on the 
graph G, whose pole nodes are denoted as s (source) and t 
(drain) with the parameters: mV=4 and mL=5. For example, 
as it is shown in Figure 1 (experts often define such structure 
as «bridge» [16]). It should be noted that currently TPN has 
transit nodes in the following form: . In this 
situation:  (Fig. 1).

Figure 1b shows a graph with numbers renumbered by 
edges (using the method of «arc crossing» [16]), ranging 
from (mV+1) with step 1 to (mV+mL), and Figure 1c presents 
the same renumbered RG, but here symbol «l» on edges is 
omitted for the purity of the picture. We will often resort to 
Figure 1. Thus, «continuous» numbering of RG elements is 
presented in Figure 1c. It should be noted that symbols «v» 
and «l» will be used rarely when creating any structures on 
RG (for example, SCh and SCu).

Let us form in TPN (Fig. 1c) a set of its SCh according 
to the principle: «Every parent-node chooses a child-node 
from nodes adjacent with it and not occupied, that has 
the lowest number k [17]»:

. (1)

own in Figure 1, every transit node was both «parent» 
and «child», but s (source) was only «parent» and t (drain) 
– only «child». 

With the same principle let us form SCu set (method of 
«continuous start» [17]):

. (2)

SCh is in good order when all its edges are in working 

condition (WC): , and is in fault order 

when even one of its edges is in faulty condition (FC): 

 (here ∀ is an «generality» quantifier, 

∃ is an «existential» quantifier, and ∈ means «belongs to» 

Figure 1. Renumbered simple random edge graph



Dependability, vol. 17 no.3, 2017. Structural dependability. Theory and practice

26

[30–33]). SCu is in good order when all its edges are in FC: 

, and is in fault order when even one of its 

edges is in WC: .

2.2 Explaining example. Let us take initial data on AF 
of RG TPN edges: 

, (3)

where ⇒ is the «sequence» symbol [31–33].
Let us calculate an exact value of probability of connect-

edness (PC) of our TPN. Firstly, based on (1), let us describe 
complete event of connectedness (CoC) of TPN (when TPN 
nodes-poles are connected with even one working SCh), 
denoted as symbol Es,t: 

 , (4)

where • is the symbol of logic algebraic multiplication 
(LAM) (* is the symbol of LSM, in which in contrast to 
LAM, structural dependence of the multiplied logical op-
erands is taken into account). 

It should be noted that here (and hereafter) we don’t 
«load» the edge WC with double bar over elements of 
operands as it shows that the edge is in faulty condi-
tion. 

Double negation is the edge WC (bar cancels bar), i.e. 
«faulty» and «working» are synonyms. Let us write calcula-
tion formula for Ps,t, based on the result (4): 

 . (5)

Let us expand in (5) our initial data (3) and deduce that 
the exact (within the accuracy of initial data (3)) PC value 
of our TPN will be equal to: 

 . (6)

Now we have some «criterion» in the form of Ps,t=0,766, 
that allows us to make a comparison between «old» and 
«new», i.e. offered. 

2.3. Task definition. Firstly, let us write according to [3] 
the formal representation of EPA for general cases: 

. (7)

where  is the conjunction (logical (or arithmetical) 

products);  is the complement of EE (or I) conjunction 

(logical (or arithmetical)) (cEEc). 
If we exclude the intermediate transformation, then EPA 

should be written as follows: 

 

. (8)

In relation to our RG example (Fig. 1), these events (ac-
cording to (1), (2) and (8)) can be graphically represented 
as shown in Fig. 2. 

The redundant TPN CoC on SCh is read as: «The comple-
ment of EE conjunction of the complement of EE conjunc-
tion of WC edges included in n-th SCh». At the same time, 
insufficient description of TPN CoC on SCu reads differ-
ently: «The conjunction of complement of EE conjunctions 
of FC edges included in n-th SCu».

If TSE PC TPN have been calculated, then the calculation 
of approximate estimate of , relative error of Δs,t (a priori) 
and absolute error of Ws,t (a posteriori) is simple: 

, , 

  and . (9)

1: It is required to prove (the first in (8)), that eliminating 
of structural interdependency of logical operands of conjunc-
tion leads to the redundancy in description of TPN CoC. 

2. It is required to prove (the second in (8)), that eliminat-
ing of structural interdependency of logical operands of cEEc 
leads to insufficiency in description of TPN CoC. 

3. The proved statements should be illustrated by graphi-
cal and numerical examples. 

Figure 2. “Bridge” in terms of EPA elemental events
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3. Task solution 

In accordance with the rules (7-8) and sets of SCh (1) 
and SCu (2) sets EPA in relation to the «bridge» (Fig. 1 and 
Fig. 2) looks the following:

 
. (10)

Based on (10), we deduce the following calculations 
formulas for TSE PC TPN (for UB and LB PC TPN): 

 . (11)

As in this case we have step-by-step «accumulation» of 
some numerical value as a result of multiplication (not addi-
tivity) then this «step-by-step principle» will be represented 
by arrows. Let us use our initial data (3) and calculate TSE 
PC TPN on EPA: UB , and LB  bear in mind (6), that 
Ps,t=0,766: 

. (12)

Let us use the results and build the graph of dual image 
[17, 20] of the «behavior» of the TSE PC of our TPN (Fig. 
1c, 2 and 3). 

Analyzing the results we can see the paradox of classic 
EPA: a) UB PC TPN begins to accumulate from 0, and LB 
– from 1; b) TSE PC TPN are mutual intercrossing; c) after 
intercrossing TSE PC TPN diverge. 

The axis of probabilities and its domains and intervals pre-
sented in Figure 4 should help us in the following questions.

Logically arguing, it is possible to understand that con-
junctions and their additions (7) and (8) are nonequilibrium 
in different cases. For example, the arithmetical product of 

 in initial state are set to entity (as the sum is set to «zero» 
in initial state):

 
. (13)

The conjunction in initial state also should be reduced to 
the form of «full possible event group»: 

 
. (14)

Then cEEc in initial state should be reduced to the form 
of «impossible event»: 

 
, (15)

where ⊗ is the symbol of impossible event. 
Let us set the complement of an arithmetic product to 1, 

as the numerical range varies from «zero» to «one»: 

 
. (16)

We proceed from the fact that I*I=I, I+I=I, ⊗*⊗=⊗, 
⊗+⊗=⊗, but I+⊗=⊗, I+⊗=I.

Let us clarify only two abbreviations in Figure 4: ZPE – 
zero-probability events; OPE – one-probability events 
[9–10]. Considering that in theory of combinational depend-
ability all our calculations are based on numerical values in 
the interval from 0 to 1 (including these boundaries), let us 
formulate some statements and theorems. 

Figure 3. Graph of the dual image of the behavior of the PC TSE for the “bridge” under the adopted input data 
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Statement 1 (Fig. 4). With the increasing number of 
cofactors in the form of probabilistic numerical values the 
value of their product falls dramatically and converges to 
ZPE domain. 

Statement 2 (Fig. 3). With the increasing number of logi-
cal cofactors, the veracity of their logical chain decreases. 

In [16] it is written: «When you remove the brackets 
remember the rule: p·p=p». Let us name this rule by the 
author’s name of this article: «Bogatyrev’s rule». 

Theorem 1. The connectedness event of TPN described 
by cEEc is redundant; every of TPN is cEEc where WC of 
RG edges are its cofactors, i.e.: 

 
. (17)

The proof: 

Turning to the stochastic side of «endspiel» and remem-
bering that (0<p(a,b,c)<1) it is easy to see that the comparison 
result is performed as follows ((–pa)>–1), q.e.d. (⇔ is the 
symbol «compare»). 

Corollary 1.1. As in EPA only LAM is used then accord-
ing to (17) in EPA (the first in (8)) only the redundant TPN 

CoC is always described that leads to the crossing of UB 
from the bottom of the exact value of PC TPN thereby this 
UB is the false estimate. 

Corollary 1.2. To eliminate this lack, it is necessary to use 
LSM rules instead of LAM when describing UB PC TPN in 
EPA [17, 20]. Then the redundant description of TPN CoC 
is impossible and the false UB PC TPN on EPA becomes 
true, i.e. in lower LB PC TPN. The LSM rules for SCh in 
FC (the first in (8) and [17, 20]) are the following: 

 . (18)

Theorem 2. The connectedness of TPN described by 
conjunction of cEEc where WC of RG edges is its cofactors 
is redundant, i.e.: 

. (19)

The proof: Let us also transfer the comparison to «end-
spiel»: 

 

Figure 4. Event probability axis
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Turning to the stochastic side of «endspiel» and remem-
bering that (0<p(a,b,c)<1), the inequality qa>0 is always true. 
Therefore, the initial (19) is true, q.e.d.

Corollary 2.1. As in EPA only LAM is used then accord-
ing to (19) in EPA (the second in (8)) only the redundant 
TPN CoC is always described that leads to the crossing of 
the LB from above of the exact value of PC TPN thereby 
this LB is the false estimate (note: we shouldn’t forget that 
here we use GDI [17, 20]). 

Corollary 2.2. To eliminate this lack, it is necessary to use 
LSM rules instead of LAM when describing LB PC TPN in 
EPA [17, 20]. Then the redundant description of CoC TPN is 
impossible and the false LB PC TPN on EPA becomes true and 
transforms into upper UB PC TPN. The LSM rules for SCu in 
FC (the second in (8) and [17, 20]) are the following:

 . (20)

Graphic interpretation of the theorems 1 and 2 is pre-
sented in Figure 5. 

Thus, the LSM rules and OsLF will be as follows: 
Lower bound (based on SCh):

  (21)

where  «under conditions», and
Upper bound (based on SCu):

 . (22)

This completes the description of the main results. 

4. Example

Let us take as an example «the bridge» (Fig. 1c), 
whose SCh and SCu sets are represented accordingly in 
(1) and (2) and initial data on AF edges are in (3). Let us 
calculate LB PC TPN «behavior» based on OsLF formal 
rules (19): 

  (23)

The results at the corresponding step after LSM oper-
ands is marked by double underline. If we exclude from 
(21) all intermediate logical operations then we obtain the 
following: 

 

. (24)

Let us use our initial data (3) and show the dynamic of 
«normal» behavior of the LB PC TPN obtained according 
to the stated in the article OsLF rules (19), which allowed 
estimates to stop their mutual crossing and transform from 
LB to UB PC TPN which was the distinctive feature of 
«classic» EPA. The increasing LB PC TPN are the fol-
lowing: 

 . (25)

It could be seen that at the last 4th step LB PC TPN is equal 
to the exact value of PC TPN, estimated in (6). 

Let us describe the dynamic of UB PC TPN «normal» 
behavior using OsLF method, according to the rules (22): 

Figure 5. Graphic interpretation
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 (26)

Using our initial data (3) we can obtain numerical values 
of falling UB PC TPN equal to the PC TPN exact value:

 . (27)

As a result, UB PC TPN became also equal to the exact 
PC TPN value calculated in (6). 

Based on the results (25) and (27) it is possible to con-
struct the graph of the dual image [17, 20] of LB PC TPN 
increasing and UB PC TPN falling dynamic for the exact 
PC TPN value. This graph is presented in Figure 6. Here it 
is also shown that FIP estimation procedure was realized at 
the 2d step, the estimative parameters of the calculations were 
obtained under which the operator should decide whether 
he continuous calculations or not. 

5. Conclusion

In summary, we think that we (co-authors) completely 
solve the task. Based on the results we can see that deduced 
EPA doesn’t belong to NP-class. These new assessments 
based on human intelligence belong to IN-class. This ap-

proach is very popular among experts involved in structural 
dependability analysis of complex systems. 
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