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Abstract. Aim. The article examines the behaviour of renewable objects that are complex 
systems and generate temporally unhomogeneous failure flows. The objects’ dependability is 
described with a geometrical processes model. The mathematical model of such processes 
allows considering both the ageing and renewal of a system. In the first case the failure flow 
rate increases with time. That corresponds with the period of ageing, when the failure rate 
progressively grows and the system fails more and more frequently. In the second case, the 
failures that show high rate at the beginning of operation become rare with time. In technical 
literature, this stage of operation is called the burn-in period. Normal renewal process is a spe-
cial case of the geometric process model. In real operation conditions not all operation times 
end with a failure. Situations arise when as part of preventive maintenance a shortcoming is 
identified in an observed object, that gets replaced as the result. Or, for a number of reasons, 
a procedure is required, for which the object is removed from service and also replaced with 
an identical one. The object that was removed from service is repaired, modernized or simply 
stored. Another situation of unfinished operation occurs when the observation of an object is 
interrupted. More precisely, the object continues operating at the time the observation stops. 
For example, it may be known that at the current time the object is in operation. Both of 
the described situations classify the operation time as right censored. The task is to estimate 
the parameters of the mathematical model of geometric process using the known complete 
and right censored operation times that are presumably governed by the geometric process 
model. For complete operation times, this task was solved for various distributions [11-16]. 
As it is known, taking into consideration censored data increases the estimation quality. In 
this paper the estimation task is solved subject to the use of complete and right censored 
data. Additionally, the article aims to provide an analytical justification of increased estimation 
quality in cases when censoring is taken into account, as well as a practical verification of 
the developed method with real data. Methods. The maximum likelihood method is used for 
evaluation of the parameters of the geometrical process model. The likelihood function takes 
into consideration right censored data. The resulting system of equations is solved by means 
of the Newton-Raphson method. Conclusions. The article introduces formulas for evaluation 
of model parameters according to the maximum likelihood method on the assumption of vari-
ous distribution laws of the time to first failure. The resulting formulas enable the estimation 
of the parameters of the geometrical process model involving uncertainty in the form of right 
censoring. Analytical evidence is produced on increased accuracy of estimation in cases when 
right censored data is taken into consideration. Parameter estimation was performed based on 
real operational data of an element of the Bilibino NPP protection control system.
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Introduction

As it is known, in the course of its operation technical 
equipment goes through several stages. Depending on the 
stage of operation, equipment dependability indicators 
change, as do their calculation methods. Until recently, most 
attention was given to the normal operation period, at which 
the failure flow parameter (rate) is a nearly constant value. 
In this case, the equipment operation process is assumed to 
be homogenous in time, while the dependability indicators 
are calculated using conventional methods that are, for in-
stance, presented in [1]. Yet calculations of the dependability 
indicators must take into consideration two other periods: 
burn-in and heavy wear, when the failure flow parameter first 
decreases, then increases in time. Generally, there might be 
other, more complex time dependencies.

In [1-3], there is a short overview of various mathematical 
models of failure flow nonhomogeneity. Among the primary 
event flow nonhomogeneity models in current theories are 
the nonhomogenous Poisson flows, gamma processes, trend-
renewal processes, flows based on the normalizing function 
model, and finally geometric recovery processes.

Geometric processes are described with one of the sim-
plest models of inhomogeneous (in time) recovery processes. 
The model of these processes appeared quite recently [4-10] 
and is not yet as popular as the models of conventional re-
covery processes. That is primarily due to the fact that many 
theoretical matters related to the properties of such proc-
esses, as well as some matters of estimation of parameters of 
geometric recovery process model under different input data 
are still poorly studied. Thus, [11-16] set forth and examine 
some estimation methods (primarily, maximum likelihood 
method) of the degradation coefficient (denominator) of 
the geometric recovery process subject to availability of 
complete statistical information on the failures. In [16], the 
non-parametric method of confidence interval construction 
for the geometric process denominator is shown that allows 
verifying the statistical hypothesis of the presence of one or 
another geometrical process.

This paper aims to construct an estimation based on 
the method of maximum likelihood of model parameters 
in situations when statistical data contains uncertainty in 
the form of unfinished time between failures. Let us define 
such operation time as right censored time between failures. 
Additionally, the paper aims to prove the fact of increasing 
accuracy of evaluation of the parameters of the examined 
model if censored data is taken into consideration.

The input data for the required calculations are complete 
and right censored times between failures of a set of homoge-
neous elements. For the purpose of this paper, homogeneity 
is understood as the identity of equipment, identical operat-
ing conditions, roughly same age, etc. The operation times 
have equal dimensions.

Inhomogeneity of geometric type 
failure flows

The name of the process is directly associated with the 
concept of geometric progression. Geometric processes are 
a generalization of renewal processes. Unlike the normal 
renewal process that models ideal repair, geometrical proc-
ess can be used in modelling, for example, of imperfect 
repair, when the resulting process cycle durations are not 
distributed evenly. Nevertheless, compared to other inho-
mogeneous processes the model is quite bare, as the cycle 
durations are “governed” by the same parameters. Geometric 
processes (in the context of the dependability theory) were 
defined in [4-7].

Definition. The random value (r.v.) ξ is equal to the r.v. 
η in distribution, if their distribution functions are identical: 
Fξ(x)=Fη(x). Equality in distribution is denoted as follows.

  (1)

Definition. The sequence of nonnegative (e.g. lifetime) of 
independent r.v.’s {Δk;k=1,2,…} forms a geometric process 
(GP), if equality in distribution is satisfied

Figure 1. Set of homogenous geometric processes
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  (2)

where γ > 0 is the real number constant that, by analogy 
with the geometric progression, is called the denominator 
of geometric process. Under values below 1 let us call de-
nominator γ the degradation coefficient.

Input information

Let us assume that observation covers k of single-type im-
mediately recoverable objects each of which has a realization 
of times between failures (Figure 1). In other words, we can 
observe k homogenous independent geometric processes. 
Homogeneity is understood in the way that each process 
has the same denominator γ.

Also, let us assume that information is available on in-
complete (not ended with failure) times between failures. 
Thus, in Figure 1, for the first object the complete opera-
tion times are the first time, ∆1,1, third time, ∆1,3. The forth 
time is incomplete, as the geometric process did not end 
with a failure by the time the observation of this process 
interrupted. The second time is also incomplete. In real-life 
conditions that corresponds to a situation when the object 
under observation was replaced for some reason, e.g. if 
preventive maintenance identified a serious defect. Obvi-
ously,  cannot be considered a complete operation time. 
Thus, the operation time that did not end with failures will 
be called right censored and we will assume that that could 
be causes by at least two reasons: interruption of observation 
or equipment replacement.

Let us denote such incomplete operation times  and 
define the associated geometric process as a right censored 
geometric process.

Additionally, let us assume that generally the data table 
may have gaps, e.g. the third object is missing information 
on the third and forth operation times, while the fifth and 
subsequent ones are present. This is also true for the incom-
plete operation times.

Let us transpose the data table, i.e. let us group the 
information in accordance with the number of opera-
tion time. Let the last observed operation time have the 
number s. Let us represent the input information as 
follows:

 is the realization 

 of the first operation times, ; (3)

 is the realization 

 of the second operation times, ; (4)

 is the sth operation 

 times between failures, .  (5)

In virtue of formula (2) i+1 time between failures is re-
lated with the first operation time with the following relation 

in distribution:  Thus, the distribution 
function Fi+1(x), dependability function (PNF) Pi+1(x), dis-
tribution density i+1 of operation time fi+1(x) will be defined 
based on the respective functional characteristics of the first 
operation time F1(x), P1(x) and f1(x) similarly to the method 
set forth in [14]:

 Fi+1(x)=F1(γ
–ix), Pi+1(x)=P1(γ

–ix), fi+1(x)= γ–i f1(γ
–ix). (6)

Let us now consider the matter of estimation of unknown 
parameters of the geometric process model on the assump-
tion of the following laws of distribution of the first time 
between failures:

 P1(x)=exp(–λxβ), (7)

 P1(x)=exp(–λ1x–λ2x
2). (8)

The dependability function (7) pertains to the 
Weibull-Gnedenko distribution, (8) describes the distri-
bution with linearly increasing failure rate (see [1]). It is 
obvious that both (7) and (8) generalize the exponential 
distribution that is obtained if β = 1 and λ1 = λ, λ2 = 0 
respectively. 

Obviously, the distributions (7) and (8) can be generalized 
by the following distribution:

 
 (9)

If β1=β, λ1= λ, λ2=…= λp=0 we deduce (7), if β1=1, β2=2, 
λ3=…=λp=0 we deduce the distribution (8) and, finally, if 
β1=1, λ1= λ, λ2=…= λp=0 we deduce the exponential dis-
tribution.

Now let us consider the maximum likelihood method as 
the primary method for estimation of the unknown model 
parameters.

Method of maximum likelihood

We will define the model parameter estimators by means 
of the standard method of maximum likelihood. Let us write 
the likelihood function by means of (6) and using  
to denote the vector of (possibly) unknown parameters of 
the distribution law: 

We can naturally expect that the parameters  may be 
partially or completely known.
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The log-likelihood function (LLF) will be as follows 

.

It is not complicated to deduct a simplified form of the 
LLF:

 
, (10)

 where  (11)

By substituting here the distribution density (9) we deduct 
formulas for model parameters estimation. After a number of 
substitutions and simplifications the LLF of the generalized 
distribution is as follows:

 
  (12)

Let us represent the LLF for specific distributions:
Weibull-Gnedenko distribution.

  (13)

where  (14)

Distribution with linearly increasing rate. 

 . (15)

Exponential distribution.

  (16)

In formulas from (12) to (15) the following designations 
are introduced:

 ,   (17)

Substantiation of censoring 
consideration

Let us examine the degradation coefficient estimation 
under LLF (16), as it is the simplest one. If the rate of the 
exponential law is know, the estimation of parameter γ will 
be the solution of the equation: 

. (18)

Thus, the estimation  is the solution of the equation 

, where

.

As Ci(β)≥0, then ϕ(γ) is a monotonically decreasing func-
tion with a range space in the form of half line (0,+∞), and 
equation (18) has an unambiguous solution. Let us calculate 
the second LLF derivative:

.

The second LLF derivative at the bending point  will be 
defined by the formula:

. (19)

The last inequation once again proves that the bending 
point  is the maximum point. Yet the most important deduc-
tion out of (19) is that taking into account censored operation 
times according to (17) increases the Ci(1) coefficients. That 
increases the “steepness” of the LLF and, consequently, the 
accuracy of the resulting evaluations.

Practical application

In order to demonstrate the capabilities of the geometric 
processes model let us consider an example of its practical 
application in statistical analysis of failure data of compen-
sated neutron chambers (KNK-56) of the reactor control 
and protection system (CPS) of the Bilibino NPP. Earlier 
(e.g. see [17]) a similar analysis established that a number 
of CPS elements, including KNK-56, generate temporally 
unhomogeneous failure flows (Figure 2). 

In the figure we can note a relatively high failure rate in 
the 1980s followed by a low failure rate. The fact of inho-
mogeneity was evidenced by a number of related statistical 
criteria [17].
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It can be expected that this behaviour of the rate 
will somehow correspond with the geometric process 
model, whereby with the denominator γ >1. This con-
clusion enabled a preliminary analysis of sufficiently 
representative failure statistics that became available 
recently (Table 1).

Table 1 shows selected times between failures of the first 
five out of 16 (four for each of the 4 BNPP units) KNK-56 
elements. With the operation times ∆j,i is given the «data 
completeness indicator» δj,i that equals 1 if the respective 

operation time is complete, and 0 if, among other things, it 
is right censored.

Let us set forth the calculated parameters of models (12) 
to (15) from Table 2. It must be noted that the calculations 
using the model with linearly increasing rate (14) matched 
the results of the exponential law calculations (15), which 
indicates that the second parameter, the rate λ2 under such 
initial conditions is redundant. Therefore, it was decided to 
use the generalized model (9) with the number of summands 

p=2: 

Judging by the maximum LLF value in Table 1, the most 
appropriate distribution law model is the generalized model 
(9) and the Weibull-Gnedenko distribution. Importantly, in 
each case the geometric process parameter was larger than 
1. I.e. the hypothesis regarding this parameter suggested 
above was presumably correct. A substantiated decision 
regarding the adequacy of the geometric process model 
is possible based on either the confidence interval, or the 
statistical test comparable to [16]. Respective research is to 
be conducted in the future.

In conclusion, let us take a look at Figures 3 and 4. The 
former shows the frequency diagram of time between the 

Figure 2. KNK-56 failure flow parameter

Table 1. Times between failures of KNK-56

Element un. 1 – IK1 un. 1 – IK10 un. 1 – IK18 un. 1 – IK9 un. 2 – IK1
Operation 

time i ∆1,i δ1,i ∆2,i δ2,i ∆3,i δ3,i ∆4,i δ4,i ∆5,i δ5,i

1 5.900 1 0.481 1 0.381 1 2.833 1 1.772 0
2 7.022 0 6.036 1 7.075 0 3.556 1 9.192 1
3 0.469 1 5.700 1 1.058 0 0.042 1 3.931 0
4 0.589 0 0.658 1 0.003 0 1.050 1 0.003 1
5 14.494 0 0.047 0 0.014 1 0.622 1 0.003 1
6 13.608 0 0.608 1 0.058 1 12.817 0 0.450 0
7 28.183 1 28.028 0 15.742 0 12.289 1
8 0.369 0 3.844 0
9 6.019 1
10 3.586 0

Table 2. MLM evaluations of model parameters

Law Evaluations

Weibull-Gnedenko
γ λ β LLF-l

1.226 0.316 0.647 -179.784

Linearly increasing 
rate

γ λ1 λ2 β1 β2 LLF-l
1.156 0.153 0 1 2 -189.927

Generalized model 
(9)

γ λ1 λ2 β1 β2 LLF-l
1.218 0.202 0.101 0.747 0.447 -179.675

Exponential
γ λ LLF-l

1.156 0.153 -189.927
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first and the second failure. The latter shows the depend-
ability function (PNF) of the first five KNK-56 operations. 
We can notice a tendency to progressive improvement of 
dependability indicators. 

Figure 3. Various distribution models of time between 
the first and the second failure

Fig. 4. Dependability functions of the first five times 
to failure

Conclusion

The paper presents the geometrical model of renewal 
processes for the purpose of calculating dependability char-
acteristics of objects that generate temporally unhomogene-
ous failure flow. The maximum likelihood method is used 
for evaluation of the model parameters. The paper continues 
the research of parameter evaluation in geometrical process 
model. The key feature of the presented research is the ca-
pability to take into consideration right censored data. Such 
uncertainty occurs when non-failed equipment is replaced or 
in the case of interrupted observation. The authors analyti-
cally demonstrate that such provisions improve the accuracy 
of evaluation. They provide calculations of parameters of 
various distribution law models based on the operational 
data of KNK-56 of the Bilibino NPP RCSS.
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