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Structural reliability. The theory and practice
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STRUCTURE CONTROL IN QUEUING AND RELIABILITY 
MODELS

The optimal strategy of the structure control in queue and reliability model is studied by using controlled 
semi-Markov processes. The optimal strategy has been proved to be looked for in the class of threshold 
strategies.
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Introduction

Queue models are quite frequently used for adequate description of the functioning processes 
of various real technical and economic systems. The specific features of queuing systems (QS) 
are the presence of an input stream of requests, serving devices, a queue which distributes the 
requests to serving devices.

The tasks of QS analysis are similar to the service tasks, which are an integral part of the 
mathematical theory of reliability, as the abovelisted components reside in the process of func-
tioning of any technical system. The stream of service requests is composed by the elements 
of a system (subsystem) failed during operation and requiring recovery and service channels 
are the service teams responsible for repair. 

When analyzing QS and reliability, the optimization problems hold an important place. 
Considering the characteristic features of systems under study, an optimization task can be 
set for all the components which determine the system. In particular, the control of system’s 
structure is considered as a change of the number of involved service channels (service teams) 
and of the number of waiting facilities.

Following the general principles of the control task assignment, let us define that a control 
object is a controlled process describing the system evolution with time, control strategies is 
a set of decisions and the decision rule, and a measure, specifying the control quality. 

The task is to define the control strategy, for which a measure specifying the control quality 
takes on an extremum value.

This paper represents the model of the controlled semi-Markov process [1] necessary to 
construct an optimal strategy for the system structure control. The controlled semi-Markov 
process is defined as the process with two consecutive components X(t)={ξ(t),u(t)}, ξ(t)∈E, 
u(t)∈U, where E is a state space, U is a control space, where the moments of discontinuity of 
the components do coincide, and at these moments of the state change the process possesses 
a Markov property. 

Initial probabilistic characteristics: 
• Semi-Markov kernel Qij(t,u) = P{ξn+1=j, θn+1<t/ξn=i, un+1=u}, which is equal to a condi-

tional probability of the fact that the following value of the first component is j, ξn+1=j, and 
this transition shall happen up to the moment t, θn+1<t, provided that the previous value of 
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the first component is equal to i, ξn=i, and then the decision 
is taken u, un+1=u;

• The measures Gi(B), i∈E, u∈U, B∈A, which define the 
control strategy (decision rule). These measures are defined 
on measurable control spaces (U, A)

Quality indicator is defined by the functions Rij(t,u), i,j∈E, 
u∈U, 0≤t<∞, which are equal to the mathematical expecta-
tion of the accumulated effect for the duration of QS being 
in state i provided that in time t it shall pass into state j and 
then the decision u is taken.

The above integrated characteristics let us define the 
mathematical expectation of the accumulated effect for the 
duration of the process being in state i

 
 (1)

and the mathematical expectation of the process continu-
ously being in state i 

 
. (2)

Papers [1, 2, 3] prove the following statements:
• If an imbedded Markov chain is irreducible, then for 

the mathematical expectation Si(t) accumulated during the 
time t of the effect, provided it starts from the state i∈E, an 
asymptotic equation holds true with t→∞ Si(t)=St+o(t);

• Dependence on the initial characteristics of the func-
tional S is defined by the equation

 

, (3)

where πi, i∈E denotes a stationary distribution of the 
imbedded Markov chain, which is a normalized solution of 
the algebraic system of equations [4]

 
; (4)

• The functional  is a linear fractional functional 
with regard to the distributions , specify-
ing the Markov control strategy;

• If the extremum of a linear fractional functional does 
exist on the set of the acceptable strategies and all the de-
generated strategies are acceptable, then this extremum shall 
be reached on the set of degenerated strategies.

These mathematical results shall be used for analysis of 
the exact controlled queue models and models of reliability. 
Particularly, the further calculations shall be made directly 
for degenerated control strategies.

Now then, the definition of a Semi-Markov kernel and 
formulas (1) – (4) prescribe the sequence of the stages for 
the analysis of the exact models.

Task definition

This section will be dedicated to the analysis of QS which 
receives a recurrent flow of demands or a recovery process at 
its input. Intervals between the neighboring moments of the 
demands entries shall be specified through ξi, i=1,2,…k,…, 
and the function of distribution of these intervals shall be spec-
ified through F(x)=P{ξi<x}, F(0+0)=0. The latter condition 
means the ordinariness of the arrival stream. The durations of 
service η have exponential distribution G(x)=P{η<x}=1–e–µx, 
x≥0. There is no queue in the system. Unlike classical arrange-
ments, let us consider the system structure to be variable – the 
number of functioning channels varies in the system, but it 
can not exceed the value η, 0<η<∞. 

The decision to change the number of functioning channels 
in the system is taken in the moments tk – the moments of entry 
of a recurrent demand. It means that within the time interval 
[tk, tk+1) there are no demands to the system, but at the moment 
of tk+1 there is only one demand entry. The number of waiting 
facilities is equal to zero, that is why the demand received at 
the moment of tk+1 is lost, if at the moment of its entry all the 
available service channels are occupied, and it is taken into 
service if there is an available free channel at the moment of 
tk+1. The availability of a free service channel at the moment 
of tk+1 is linked to the release of the occupied channels within 
the time interval [tk, tk+1) and to the decisions taken about the 
number of functioning channels at the moment of tk. 

Let us assume that if at the moment of tk a free channel 
is connected, all the channels released within the period [tk, 
tk+1) are disconnected; if at the moment of tk a free channel 
is not connected, then among the channels released within 
the period [tk, tk+1) the first channel remains active, and all 
the other channels disconnect; if within the period [tk, tk+1) 
none of the channels release, any requirement received at 
the moment of tk+1 is lost.

Let us use u0=0 to specify the decision to retain the number 
of channels, equal to the number of demands present in the 
system at the moment of tk+0, using u1=1 decision to retain 
one more additional free channel along with the channel oc-
cupied with service operation of the demands current at the 
moment of tk+0 (it is sufficient to retain just one free channel as 
at the moment of tk+1 there will be only one demand entry).

If at the moment of decision making there is i of demands 
in QS, then with the probability 0≤pi≤1 the decision u0=0 
is made, and with the probability 0≤qi≤1 the decision u1=1, 
pi+qi=1, i=0,1,2,…,n is made. With i=n we have pn=1, qn=0 
due to the limited total number of the channels of value n. Us-
ing mathematical terminology, at first, a class of randomized 
control strategies is used [1, 2] under the task definition.

Let us enter the cost performance characteristics which 
define the functional, specifying the quality of performance 
and control. Let us assume that c0 is the profit per one served 
demand; c1 is a pay for one hour of the involved channel 
operation; c2 is a pay for one hour of a free channel down-
time, c3 is a pay for the loss of one demand.

The model described above fully stays within a model of 
discrete control of a semi-Markov process [1]. 
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Task solution

1. Construction of a control object. The control object 
shall be a semi-Markov process X(t), describing the evolu-
tion of the respective queuing system with time. In order 
to define it, let us introduce the sequence t0=0, tk, k=1,2,…, 
tk≤tk+1 of neighboring moments of the demands entries 
into the system. Let us define a stochastic process X(t), 
with X(t)=i, t∈[tk,tk+1), if at the moment of tk + 0 there are 
i requests under operation. This means that above intro-
duced stochastic process takes the values from the range 
E={0,1,2,…,n}. We shall note that the state i=0 is realized 
when there were no demands, and when the arrived demand 
was not lost. If we know the number of demands in the sys-
tem at the moment of entry of a recurrent demand, then under 
the taken expectations this process is a Markov process, as 
the distribution of the time interval followed by the next 
request, does not depend on the past, and the distribution 
of the number of the demands served in this time interval 
does not depend on the past either, due to the absence of 
consequence of the exponential distribution. Therefore, this 
is true that the process X(t) is semi-Markov.

2. Definition of a semi-Markov matrix. For the model 
under analysis, the elements of a semi-Markov matrix are 
defined by the equations with i∈E

  (5)

Other elements of a semi-Markov matrix are equal to 
zero.

Let us clarify the equations (5). If we know the taken 
decision, then we also know the number of requests being 
served at the moment of decision-making – the moment of 
the request entry. If we know that the next demand shall 
arrive at time x, then, due to a wonderful property of the 
absence of consequence of exponential distribution, at the 
moment of a recurrent request the number of unserved de-
mands has the Bernoulli distribution with a parameter e–λx. 
It leads to formulas (5).

3. Description of control space and strategies space. For 
each state i∈E={0,1,2,…,n} the control spaces Ui={0,1}, 
i≠n, Un={0}, are composed of two possible decisions: to 
link a free channel, or not to link it (except for the state 

i=n, when there are no free functioning channels available), 
therefore, randomized strategies are defined by probabilistic 
distributions (pi,qi), pi≥0, qi≥0, pi+qi=1, i≠n, qn=0. Thus, any 
of the randomized strategies can be expressed by a vector 
(p0, p1, …, pn–1, pn = 1). Space of degenerated strategies, 
with consideration of pn = 1 can be equated with a set of 
n-dimensional vectors of zeros and ones, containing 2n of 
elements. We shall further define any degenerated strategy 
by (n+1)-dimensional dyadic vector, in which the one in the 
k-th bit means that in the state k with probability one, the 
decision is taken to link a free service channel, and a zero 
in the k-th position means that in the state k with probability 
one, the decision is taken not to link a free service channel. 
Let us note that this dyadic vector does always have the 
value of the last bit equal to zero.

4. Construction of the functional. Let us use Aij(t,u), i,j∈E, 
t≥0, u=0, 1 to specify the event of the process in the state 
i, passed during the time t into the state j and the decision 
u was taken.

If in the state i∈E the decision u=0 is taken and the proc-
ess passed into the state j, then: 

• with i=0 there are no demands in service at the beginning 
of the period, none of the channels is activated, the arrived 
demand is lost. Consequently, under the listed conditions, 
a mathematical expectation of the accumulated effect, ex-
pressed through income and efforts, is equal to 

 R00(t,0)=c3. (6);
• with i=1,2,…,n, j=i at the beginning of the period the 

i of demands are in service and there are no free channels. 
The transition into the state j=i is possible in two cases: 
either during this period no demand is completely served 
(in this case the arrived demand is lost) – the event B0, 
or during this period one demand is completely served 
and the arrived demand entered the service – the event 
B1. Thus under the accepted specifications the equations 
(5) lead to

 

 (7)

Further onб let us use v to specify the number of demands 
after service, and ζ could be used to specify the total time of 
channels operation on the period between the neighboring 
Markov moments of the demand entries. Then under the 
accepted conditions, the mathematical expectation of the 
accumulated effect, expressed through income and efforts, 
is equal to

 , (8)

where Ci,i(t,0) is the mathematical expectation of the ef-
forts on the operation and the down time of a service channel 
on the period under consideration under the same conditions. 
That is why we have
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  (9)

Considering that these efforts are proportional to the total 
time of operation of the service channels, we can write 

,

where M(ζ/Aii(t,0)) is the mathematical expectation of 
the total time of the operation of the service channels on the 
considered period provided the transition of the process from 
the state i∈E to the state j∈E during t time. Let us further note 
that under the accepted statements, the process defined as the 
number of requests in the system is described by the Markov 
process of death with the transitions rates µk=kµ, j–1≤k≤i. That 
is why the total time of operation of service channels on the 
considered period providing the process transition from the 
state i∈E to the state j∈E during t time is the integral of the 
path ξ(t,ω) of the Markov process of death with the transi-
tions rates µk=kµ, j–1≤k≤i, for which either {ξ(0)=i, ξ(t)=i}
condition, or {ξ(0)=i, ξ(t)=i-1}

 
condition are fulfilled.

The paper [2] contains the correlations for integral con-
ditional mathematical expectations, and these correlations 
lead to the formulas 

 . (10)

Then, with account of correlations (7) and (10) we can 
write 

 (11)

By combination of the equations (8), (9) and (11), we 
can get 

  (12)

• with 2≤i<n, 0<j≤i–1 in the period between the 
neighboring moments of demand entries into the sys-
tem, only the demands are being served and thus the 
number of the demands reduces. The number of the 
served demands is positive and is equal to i–j+1≥2. 
Consequently, at the moment of a new demand entry, 
there will be a free channel available and the demand 
won’t be lost. Thus,

  (13)

where using Ci,j(t,0) we shall specify the mathematical 
expectation of the efforts for operation and down time of 
service channels on the considered period provided there oc-
curred the event Aij(t,0). The number of the served demands 
is equal to i–j+1≥2, that is why the mathematical expectation 
of the total time of service operation, defined by the formula 
(10), is equal to

  (14)

as a newly arrived demand just starts being served.
At the same time, the first released channel remained 

being linked but was in a down state up the moment of a 
new demand entry. The paper [2] defines the mathematical 
expectation  of the first released 
channel operation time 

 . (15)

Using the equations (14) and (15), we get with 2≤i<n, 
0<j≤i–1
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  (16)

Then with 2≤i<n, 0<j≤i–1 from (13) и (16) we shall have

  (17)

So we have calculated all desired mathematical expecta-
tions under the decision u=0. It is not necessary to perform 
these calculations for other parameter values i,j∈E, because 
the respective elements of a semi-Markov kernel (5) are 
equal to zero.

If in the state i∈E the decision u=1 is taken and the proc-
ess passes to the state j, then:

• with i=0 at the beginning of the period there are no 
demands in service, none of the channels is activated, one 
free channel is linked, the arrived demand is not lost, as there 
was a free channel available. Consequently, under the listed 
conditions, a mathematical expectation of the accumulated 
effect, expressed through income and efforts is equal to

 ; (18)

• with i=n a decision on the fitting of a free channel can 
not be made. With n–1≥i≥1 at the beginning of the period 
the demands in the amount of i are being served and there 
is one free channel, during the period the demands in the 
amount of i–j+1≥0 are completely served and, at last, the 
demand arrived in the end of the period is not lost. Thus, 
under the listed conditions, the mathematical expectation 
of the accumulated effect expressed through income and 
efforts is equal to Rij(t,1)=c0(i–j+1)+Ci,j(t,1)+c2t, where, as 
before, the Ci,j(t,1) is used to specify mathematical expecta-
tion of the efforts on the service channels operation on the 
considered period under the same conditions, i.e. the event 
Aij(t,1)occurred. 

Using the equation (10), with n≥i+1≥j≥1 we get the 
mathematical expectation of the total time of service chan-
nel operation 

.

It leads to 

 . (19)

It is not necessary to calculate the rest of mathematical 
expectations, as the respective elements of a semi-Markov 
kernel are equal to zero.

5. Calculation of mathematical expectations of time 
of the process continuously being at a fixed state. For the 
model under analysis, mathematical expectations mi(u), 
i∈E, u=0,1 with consideration of (2) and (5) are defined 
by the equations 

 
. (20)

6. Calculation of mathematical expectations of income. 
Mathematical expectations si(u), i∈E, u=0,1 of the income 
for the time of the process continuously being with con-
sideration of (1), (5), (12) and (17)-(19) are defined by the 
equations

(21)

(22)

7. Calculation of steady-state probabilities of an imbed-
ded Markov chain.

With consideration of correlations (5) for the matrix 
elements P of transition probabilities the following equa-
tions follow 
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(23)

Let us further consider the set of degenerated strate-
gies, for which the decision to link a free channel with 
probability one is taken for the states i, 0≤i≤k<n. These 
degenerated strategies are expressed by dyadic vectors, 
first k of components of which take on the value of one, the 
k+1-th component takes on the value of zero, and the rest 
components takes on any values except un=0, i.e. all the sets 
of degenerated strategies under different 0≤k≤n divide into 
disjoint sub-sets of the type (1,1,…, 1, 0, uk+1,…, un–1, 0). 
For any strategy of this set uk=0 and pk,k+1(0)=0.

Thus, under 0≤k≤n, stationary probabilities of the states 
of the imbedded Markov chain πi, i∈E correspond to the 
system of algebraic expressions (5), where the transition 
probabilities are defined by the equations (23).

Under pk,k+1(0)=0 transitions from the states E0={0, 
1, … k} into the states from the set E1={k+1, …, n} are 
impossible. Therefore, the set E1={k+1, …, n} is the set 
of nonexistent states, and the set 0 {0,1,... }E k=  forms 
a closed class of communicating states [4] and there is the 
only steady-state distribution, for which the following cor-
relations are valid:

To define steady-state distribution of πi>0, i∈E0, it is 
necessary to find a system’s normalized solution 

  (24)

which shall be specified by .
The equation (24) proves that for any degenerated strat-

egy of the selected sets, the steady-state distributions of the 
impeded Markov chain are common. 

8. Calculation of the quality indicator and selection of 
optimal control strategy. For the case under consideration, 
the set of process states forms a single class of communi-
cating states. That is why we shall use the equation (3) for 
calculation of quality indicator. Let us plug a normalized 
solution of algebraic system of equations (24) and expres-
sions (20) – (22) into (3), then we have S(0)=c3, k=0 and 
under 1≤k≤n 

Let us choose the max(S(0), S(10), …, S(n–1), S(n))=S(k0) and 
the number k0, this maximum is achieved at. Thus, there is a 
threshold optimal strategy, for which it is necessary to link 
a free service channel in the states i=0,1,…,k0–1, and in the 
state i=k0 it is not necessary to link a free service channel. 
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