
60

Functional reliability. The theory and practice

Kabak I.S.

OPTIMIZATION OF COSTS FOR DEVELOPMENT
AND OPERATION OF COMPLEX SOFTWARE
OF INFORMATION AND CONTROL SYSTEMS

The problems related to information solutions deployment in the education system are connected with the
development of complex software that solves both information and management tasks. The development
of such software involves significant material costs. Beside the software development costs, the expenses
related to elimination of the consequences of software failures must be taken into consideration as well.
All those costs should be evaluated at the stage of the development of performance specifications for
software. This article deals with the evaluation and minimization of the above costs.

Keywords: modeling, software dependability.

In a market economy, product quality is of primary importance. Quality involves a
number of parameters, including dependability. Manufacturing quality products requires
dependable automation systems. Automated control systems (ACSs) include hardware and
software. ACS software dependability is a comprehensive property whose main component
is reliability. Reliability is a property that characterizes the ability to retain the availability
in given operating modes and conditions. ACSs of technical systems are constantly growing
in importance. They are used in industrial facilities, transportation, aerospace, defense and
other industries.

Today’s ACSs of technical systems are complex equipment systems that include
computers, data networks, controllers, sensors, executive mechanisms and other devices.
As an essential component they include complex software. The operational quality
and dependability of the whole automated system largely depends on the quality and
dependability of the software. Compliance with the requirements for the quality and
dependability of the software must be ensured at all stages of an ACS’s lifecycle. Evaluation
of the dependability of ACS software involves collecting and processing of failure data
both during software development and operation. ACS software failures are primarily
caused by coding errors.

The purpose of this paper is to reduce the cost of software development and operation of
equipment controlled by such software during business operations, personnel training and
research.

In order to reach the set goal the following tasks must be solved:
- evaluate the dependability of complex software, mean time to failure;
- based on the software mean time to failure, identify the expected total losses caused by

system failures;
- generate the model of dependence of a complex software development cost on its

dependability (mean time to failure);
- define an economically feasible level of complex software dependability.

61

OPTIMIZATION OF COSTS FOR DEVELOPMENT AND OPERATION
OF COMPLEX SOFTWARE OF INFORMATION AND CONTROL SYSTEMS

Evaluation of software
development cost

The development of software includes a number of stages,
including the development of performance specifications and
algorithmic presentation, offline and complex debugging,
acceptance testing. Depending on the type of program
and design tools, programming languages and techniques
used, the respective cost components differ. However,
in the development of complex control and information
management hardware and software systems that include
costly equipment, the component relating to the complex
debugging is the largest. The complex debugging is
often combined with acceptance tests, therefore it can be
considered that this is the final stage of the development
process. The decision regarding the end of development
and commissioning of the finished software can only be
taken at this stage.

Complex debugging involves not only local resources,
but also additional remote equipment. Beside the cost of
personnel performing the search and elimination of software
errors, depreciation of local computer and communications
equipment, the expenses related to manufacturing equipment
rental, as well as the cost of computer and other equipment
operation, cost of intermediate products and tools used
in non-production activities, remuneration to remote
employees, electricity and heating should be taken into
consideration as well.

As an example, let us consider the project of
development of software for remote training of process
automation and mechanical engineers. Table 1 shows
the weekly cost of complex debugging during 10 weeks.
The information includes all costs including equipment
depreciation.

Table 1. Costs of complex debugging of soft-
ware of the flexible industrial training system
(MSTU STANKIN) in conventional units

1st
week

2nd
week

3rd
week

4th
week

5th
week

6th
week

7th
week

8th
week

9th
week

10th
week

0.98 1.02 1.01 0.99 0.98 1.01 1.02 0.99 0.99 1.01

The information given in Table 1 lets us suggest a linear
dependence of debugging cost from its duration (time of
debugging in weeks). Using the chi-square method, let us
verify the legitimacy of that suggestion. The processing of
the information given in Table 1 confirms the hypothesis
with probability 99.5 %. Therefore, the assumption of the
linear dependence of the rising cost of complex debugging
on its duration is confirmed. Those costs are shown in Fig. 1
with the dash line:

	 C1 = c∙t,	 (1)

where c is the average cost of software development per
time unit; t is the duration of debugging.

Each software failure entails additional financial
losses caused by interruptions in the manufacturing
process and correction of errors. In order to identify the
losses caused by software failure it is required to know
the dependence of the failure rate from the duration
of debugging. Such dependence is considered in the
author’s papers [1-3].

The flow of software failures is considered to
be ordinary. Failure rate matches the failure flow
parameter [1]. The average number of failures with
recovery per time unit matches the failure rate. The
failure rate was identified based on the software
dependability model [1]:

	
,	 (1)

where N is the number of various groups of operators
or classes with identical dependability characteristics; a1,
a2, a3, …, aN , b1, b2, b3, …, bN are the coefficients of the
model equation.

Let us specify the average software failure cost С1 and
deduce the formula that associates the losses caused by
software failure С0 with the failure rate Н(t):

	 С0 = С1∙Н(t).	 (2)

By inserting the value Н(t) from formula (1) we will
finally deduce:

	 .	 (3)

In Fig. 1 the curve C0 is drawn with the solid line.

Fig. 1. Total software development cost

The total cost of software debugging can be defined as
the sum of C1 and С0:

	 	 (4)

In fig. 1 total costs С are shown with the heavy dash-
and-dot line.

OPTIMIZATION OF COSTS FOR DEVELOPMENT AND OPERATION
OF COMPLEX SOFTWARE OF INFORMATION AND CONTROL SYSTEMS

62

Function С has a minimum, which is shown in fig. 1.
Thus, an optimal software debugging time exists (Тdbg) that
minimizes total financial losses.

Statement of problem for optimization
of software dependability and
selection of method

In [1] the authors provide a formula that associates
the software failure rate with its structure, failure rates of
its modules and probability of no-failure of the system’s
modules. According to that formula, the software failure
rate is:

	
	 (5)

where hi(ti) is the failure rate of a module of the i-th group
in case of its debugging during time ti, vi is the frequency
factor that takes into consideration the system’s structure
and probability of no-failure of its modules.

Dependence H(t) is considered in [2] that refers to the
results of mathematical modeling of dependability. It has
been found that the value of function H(t) is determined
from formula:

	 ,	 (6)

where vi is the probability of no-failure of a module of
the ith type; ti is the time of its operation; бi is a complex
coefficient that takes into consideration the debug time and
several other parameters.

Dependence H(t) of failure rate from the software
operation time is a non-linear characteristic.

Let us assume that time T0 has been given for software
debugging. This time will be the total of all debug times of
modules. The debug time of each module is a nonnegative
quantity:

	 	 (7)

By modifying the value of debug time of module i ti while
observing the set of constraints (7) we will deduct various
values: functions Н(t1, t2, ..., tN).

Let us set the problem of minimizing the value of
software failure rate Н(t1, t2, ..., tN) (6) while observing the
constraints (7).

Given the non-linearity of functions hi(ti) the optimization
task can be solved based on the nonlinear mathematical
programming methods.

Most non-linear programming methods have no
restrictions of the number of optimizable variables. As N

grows, the labor intensity of the calculations increases as
well, which complicates their practical application. Existing
software of automated control systems consists of 100 –
500 or even more program modules. With the N values
that high, many nonlinear programming methods become
inefficient.

Let us consider a case when the software consists of a
large number of program modules characterized by a small
amount of code and simple structure.

In order to optimize such software’s dependability it
is suggested to use an algorithm based on the Bellman
principle [8, 9].

Solution of the optimization task based
on the Bellman principle

The software failure rate depending on the debug time
can be evaluated using formula [2]:

	 	 (8)

Let us expand the logarithmic function as

a power series, use it in formula (8) and deduce:

	
.	 (9)

Note that value P0 is quite small and amounts to 0.1 –
0.03. Value б does not exceed 1. Raising to the jth power

will make the product rapidly diminish. The

second element of the power series will be at least 100
times, while the third at least 15000 times smaller than the
first element.

We can afford using just the first element of the series
without significantly loosing in accuracy:

.

Let us reduce the right part of the last equation to an
exponential form:

.

In order to simplify further calculations let us indicate:

,

63

OPTIMIZATION OF COSTS FOR DEVELOPMENT AND OPERATION
OF COMPLEX SOFTWARE OF INFORMATION AND CONTROL SYSTEMS

.

Then we will deduce:

	 .	 (10)

Let us substitute (10) into (5):

	 .	 (11)

It is required to find the minimal failure rate (11) for the
set of constraints (7). In order to optimize the failure rate
function imposed by formula (11), let us use the dynamic
programming method, i.e. generate a series of recurrence
formulas:

	
,	(12)

	 .	 (13)

In formula (12), the minimal sum-function is calculated,
one of the functions being exponential. It can be shown that
functions fk(t) at all allowable values of k will be exponential
as well. This assertion is evidenced in [1].

The minimization required to perform calculations
using formulas (12) and (13) is somewhat complicated. In
order to proceed to the next step, i.e. increment of value k,
it is required to identify function fk(t) within the interval
0 ≤ t ≤ T0.

In order to obtain the recurrence calculation formulas,
let us differentiate formula (12) in square brackets (where
k = 2) and equate the result of differentiation to zero, as it is
normally done when solving extremum problems in classic
mathematical analysis.

Having solved the resulting equation with respect
to variable t1 and substituted it into expression (12) we
will obtain the analytic expression f2(t). Let us write the
expression for f2(t) as (13) and identify the respective value
of new coefficients with exponent and argument t.

The validity of the above mathematical operations is
evidenced and the detailed development of the recurrence
formulas is given in [1].

In order to evaluate the practical results of software
dependability optimization, failure rates of existing software
were analyzed. The values of failure rate were evaluated for
two methods:

- for traditional debug time distribution, when all program
modules are debugged to the same value of failure rate;

- for optimal debug time distribution that is calculated
using formulas (11) – (13).

The comparison of the two debug time distribution
methods has shown that optimization reduces the debug time
by 9 – 20% while keeping the same level of dependability
as without the optimization.

Conclusions

The paper has set and solved the task of rational planning
of software debugging time. Rational planning includes two
optimization tasks: definition of the minimal time fund of
complex software debugging aimed at reaching the specified
failure rate and the task of reaching the specified failure rate
of software system within the allowed development time.
The failure rate is presented as a function of many variables
from the debug time and failure rates of individual software
modules.

It is shown that most nonlinear programming techniques
are not applicable to optimization of FMS software
dependability.

The Bellman’s principle can be used under condition
of insignificant simplification of the mathematical model
of software dependability without a significant loss of
accuracy. Using that principle, recursion formulas have
been determined that allow solving both of the above
tasks.

References

1. Kabak I.S., Rapoport G.N. Software dependability
evaluation based on its mathematical model // Matters of
creation of flexible automated manufacturing facilities.
Edited by Makarov, I.M., Frolova, K.V., Belianina, P.N. –
Moscow. Nauka. – 1987. – P. 236-245.

2. Kabak I.S. Mathematical model for forecasting and
evaluation of software dependability // Herald of MSTU
STANKIN, 2014, Issue No. 1 – P. 123 – 126.

3. Kabak I.S., Sukhanova N.V. On modeling and
dependability evaluation of complex software systems //
Herald of the Kabardino-Balkarian State University. – 2012,
Issue No. 5. – P. 74 – 76.

4. Grossman K., Kaplan A.A. Nonlinear programming
based on unconstrained minimization. Novosibirsk: Nauka.
– 1981. – 84 p.

5. Polak E. Computational methods in optimization. A
unified approach. Moscow: Mir. – 1974. – 376 p.

6. Cea J. Optimization. Theory and algorithms. Moscow:
Mir. – 1973. – 244 p.

7. Fiacco А., McCormick G. Nonlinear programming.
Sequential unconstrained minimization techniques. Moscow:
Mir. – 1972. – 240 p.

8. Bellman R.E., Dreyfus S.E. Applied dynamic
programming. Moscow: Nauka. – 1965. – 460 p.

9. Bellman R. Dynamic programming: translation from
English. Moscow: Inostrannaya literatura. – 1960, 400 p.

10. Kolmogorov А.N., Fomin S.V. Elements of the
function theory and functional analysis. Moscow: Nauka.
– 1976. — 544 p.

11. Application for invention 2013133304 Russian
Federation Method and apparatus for technical diagnostics
of complex manufacturing equipment based on neural
networks [Text]/ Solomentsev Yu.М., Sheptunov S.А.,
Kabak I.S., Sukhanova N.V.: applicant and patent holder

OPTIMIZATION OF COSTS FOR DEVELOPMENT AND OPERATION
OF COMPLEX SOFTWARE OF INFORMATION AND CONTROL SYSTEMS

64

Federal State Public Scientific Establishment Institute of
Information Technology in Design and Engineering of
the Russian Academy of Sciences (IKTI RAN. – No. ;
application on 18.07.2013; notice of favorable result of
examination as to form

12. Patent for utility model 75247 Russian Federation
MPK 7 G06F15/16 Modular computer system [Text]/
Kabak I.S., Sukhanova N.V.: applicant and patent
holder Kabak I.S., Sukhanova N.V. – No. 2008106859;
application on 26.02.2008; published on 27.07.2008, Bul.
No. 21 – 2 p.: drawings

13. Patent for invention 2398281 Russian Federation
MPK 7 G06N 3/06 Multilayer modular computer system
[Text]/ Solomentsev Yu.М., Sheptunov S.А., Kabak
I.S., Sukhanova N.V.: applicant and patent holder
Federal State Public Scientific Establishment Institute
of Information Technology in Design and Engineering
of the Russian Academy of Sciences (IKTI RAN. – No.

2008143737; application on 07.11.2008; published on
27.08.2010, Bul. No. 24 – 8 p.: drawings.

14. Application for invention 2417442 Russian Federation
MPK 7 G 06NMet7/02 Method for construction of fuzzy
logic systems and apparatus for its implementation [Text]/
Solomentsev Yu.М., Sheptunov S.А., Kabak I.S.,
Sukhanova N.V.: applicant and patent holder Federal State
Public Scientific Establishment Institute of Information
Technology in Design and Engineering of the Russian
Academy of Sciences (IKTI RAN. – No. 200810203;
application on 19.12.2008; published on 27.04.2011, Bul.
No. 12- 8 p.: drawings

15. Kabak I.S. Neural network model for forecasting and
evaluation of software dependability // MSTU STANKIN
Herald, 2014, Issue No. 1 – P. 107 – 111.

16. Kabak I.S. Development of large hardware and
software neural networks for control systems. // Aviatsionnaya
promyshlennost. – 2012, Issue No. 4. – p. 57 – 61

