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APPLICATION OF GENERAL SOLUTION FOR A SYSTEM 
OF LOGICAL EQUATIONS IN DEPENDABILITY TASKS

The article proposes a new method of solving logical equations with one or more unknown variables and 
systems of logical equations that use a modified truth table. This method allows finding all general solutions. 
Solvability conditions of equation systems have been found. The theory has been illustrated by examples. 
Technical applications have been shown.
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1. Introduction

For systems with a complex structure that is not brought down to serial-parallel networks, 
a formal description of operability conditions is required. Application of the procedure of 
system availability logical functions (SHLF) generation to this end by listing shortest paths 
of successful functioning (SPSF) and corresponding disjuncts results in notation of SHLF in 
disjunctive normal form (DNF). This method is acceptable for systems with low complexity, 
but is hardly usable in the case of systems with even medium complexity (if the number of 
elements exceeds ten). Thus, according to [1], in an electric power system of 15 elements the 
number of SPSF reaches several hundreds. For more complex systems, the notation of SHLF 
as ВТА becomes practically impossible. 

The solution is simplified if the operability conditions are listed with logical equation 
systems (LES). The solution of LES by means of special methods results in a multi-bracket 
equation and a significantly more compact SHLF formula. Currently, there are a number of 
solutions of logical equation systems. For non-homogenous linear LES with constant or vari-
able coefficients, the determinant method is used [2], which allows for the following specific 
solution:

,
where y0 is the indicator of constant terms of a non-homogenous equation system. 
For y0 = 0 the specific solution corresponds to homogenous LES and is zero. In [3] the 

authors set forth three more methods of deducing specific LES solution: substitution, reduc-
tion to one equation and matrix method. Ways of successfully using the determinant and other 
method of deducing specific solutions are shown in [4, 5]. 

A specific solution of non-homogenous LES in a number of cases is insufficient or 
causes an incorrect reflection of all conditions of successful operation of a technical 
system. Accordingly, attempts have been made to eliminate the drawbacks of the specific 
solution and find the general LES solution. In [3] the authors describe two methods of 
deducing the general solution of non-homogenous LES, namely the substitution method 
and method of reduction to one equation with n unknown values. The general solution 
looks as follows:
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 , (1)
where y0 is the vector of unknown logic functions; f and 

g are known functions that depend on equation coefficients; 
yc is the arbitrary function of logical algebra; V is for dis-
junction operation. If y0 = 0, homogenous system solution 
is found. Homogenous LES are solved by substitution or 
transformation into non-homogenous LES.

Upon generation of a general solution of the form (1) 
certain difficulties arise. First, there are no recommendations 
as to the choice of random LAF yc, although the results of 
dependability evaluation depend on that choice. Also, ac-
cording to [3], there is only one solution of type (1). In fact, 
there may be a number of general solutions. But only one of 
them can fulfill special conditions of system operation. In 
order to find it, the full spectrum of general solutions must 
be available. There are now methods to do so. Insufficiently 
elaborate are also the methods of solving one equation with 
several unknown values that can also have several general 
solutions. 

Upon generation of a general solution one more difficulty 
arises. For LES, the solution has the form

.
If we suppose that here yc are identical for all functions 

уi, we will only deduce one general solution. If they are 
different for different уi, then the question arises as to how 
to choose one. 

Finally, there is the problem of logical correctness of the 
notation of the equation system and its solvability. In papers 
dedicated to the methods of LES solution this issue is gen-
erally avoided and it is by default assumed that a solution 
always exists and the system is solvable. In reality, that is 
not always the case. Equations and equation systems may 
not have a single general solution. Attempts to formally use 
known methods in such cases result in non-interpretable or 
simply absurd results. Therefore, at first it must be made 
sure that the LES has at least one general solution and the 
conditions of its solvability must be identified.

There is one more problem. For some classes of techni-
cal systems both specific and general solutions [3] can be 
unacceptable because they do not reflect some significant 
features of their operation.

In particular, that happens if the system includes feed-
back loops that are typical to some technical systems. Such 
loops are often used in information, electrical power, proc-
ess, transportation, telecommunication and other systems. 
The common feature of all the above systems is that they 
perform transmission (transportation) or transformation of 
substances (information, electric power, energy material, 
etc.) and contain a “feeding” element (source of information, 
generator, energy carrier collector). Therefore, successful 
operation of such systems ensuring the operability of a cer-
tain group of components is not enough. Conditions must 
be created for successful transportation of or transformation 
of the substance for its delivery form input (the “feeding” 
component) to the output of the system via a direct chan-
nel. The feedback loop is one of the means of ensuring such 

conditions. In information and telecommunication systems 
there are loops for transmission of service information from 
receiver to transmitter. In electrical energy systems there 
are loops for own consumption of power. In closed-looped 
process systems with wasteless use of carrier, substances 
create the loop of used carrier (e.g., steam) transformation 
and delivery of recovered carrier to the system’s input. Other 
special conditions of operation (SCO) can be formulated, for 
instance, the presence of at least on “feeding” component 
in the SPSF.

If a specific LES solution is used, an undesired absorp-
tion of the feedback loop components by direct channel 
components may take place. That causes the distortion of 
real conditions of operation and incorrect evaluation of 
dependability. If general solution [3] is used, the “feeding 
component” is often lost.

In [7] the authors set forth an analytical method of deduc-
ing the general solution of Boolean equations. That method 
is universal, but it does not suggest any constructive rules, 
general solution algorithms and selection of the alternative 
solution that full corresponds to the physical essence of 
the technical system reflected in the logical dependability 
model. 

The results set forth below are based on the use of modi-
fied truth table and allow partially overcoming the above 
difficulties.

2. General solution of equation with 
one unknown value

 , (2)

where Х = (х1, х2, …, хn ) is the vector of independent 
Boolean variable, indicators of system components operabil-
ity; Аi (X) are the known functions of the vector argument; 
y′ is the negation of у. 

Let us transform (2) into canonical form without loss of 
roots. In order to do that, we must transit from Boolean basis 
to Zhigalkin’s basis. By orthogonalizing the summands in 
(2) and replacing the disjunction operation with exclusive 
OR (module 2 addition) we deduce 

 .  (3)
By adding from left and right the right part of (3) and 

using the the equality у ⊕ ⊕ у = 0 we deduce
.

Searching through various combinations of Аi we deduce 
a modified truth table for function у that consists of three 
groups of lines: 1) у is completely defined, 2) у is not defined, 
i.e. its value is indifferent.

(0 V 1), 3) there is no solution, as (2) is not realized 
in case of any value of у (table 1). Values Ai are not in-
dependent, as their are a function of vector Х. Therefore, 
strictly speaking, some combinations of values Аi (of the 
vector in table 1) may prove to be impossible at any value 
of vector Х. 
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Table 1 data shows that out of 64 combinations of val-
ues Аi in 24 combinations function у is defined (group 1), 
including as one in 12, in 28 the combination is not defined 
(group 2) and in 12 the system (2) is unsolvable (group 3). 

Using the modified truth, a solution is generated based 
on the following rules:

1. To each set Аi, where у=1, constituent 1 (total of up to 
12 constituents) is put into correspondence.

2. To each set of group 2 constituent 1 is put into cor-
respondence. The constituent is multiplied by indicator R 
that can take the values 0 or 1.

3. Sets of group 3 are not taken into consideration.
Thus, the general solution can include only up to 40 

constituents 1 with or without indicator

 
, (4)

where М1 = (1, 8, 19, 20, 21, 22, 23, 26, 34, 42, 50, 58), 
M2 = (0, 9, 18, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39, 43, 44, 

45, 46, 47, 51, 52, 53, 54, 55, 59, 60, 61, 62, 63). Constitu-
ents 1 with and without indicator, in an explicit form, an be 
represented with the following formulas

,

 . (5)

They are some function of vector Х and can be represented 
in DNF or perfect DNF (PDNF). Indicator R in (5) is con-
sidered to be a vector, while product KR a scalar product. 
Then, (5) can be represented as 

,
where kc

j is constituent 1 relating to vector Х; rj is an indi-
cator function; m is the number of constituents 1 in SDNF.

By searching through the possible values of indicator 
functions we deduce 2m various possible solutions each of 
which must be verified as fake root are possible. Verification 
is performed by means of substitution into (2).

Table 1. Modified truth table 

№
Item А1…А6 Form of the equation у Group №

Item А1…А6 Form of the equation y Group

0 000000 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2 32 100000 1 ⊕ 0у ⊕ 0у′ = 0 No 3
1 000001 y′ = 0 1 1 33 100001 1 ⊕ у′ = 0 0 1
2 000010 y = 0 0 1 34 100010 1 ⊕ y = 0 1 1
3 000011 y ⊕ y′ = 0 No 3 35 100011 1 ⊕ y ⊕ y′ = 0 0 V1 2
4 000100 1 ⊕ 0у ⊕ 0у′ = 0 No 3 36 100100 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
5 000101 1 ⊕ 0у ⊕ 0у′ = 0 No 3 37 100101 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
6 000110 1 ⊕ 0у ⊕ 0у′ = 0 No 3 38 100110 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
7 000111 1 ⊕ 0у ⊕ 0у′ = 0 No 3 39 100111 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
8 001000 y′ = 0 1 1 40 101000 1 ⊕ 0у ⊕ 0у′ = 0 No 3
9 001001 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2 41 101001 1 ⊕ у′ = 0 0 1
10 001010 y ⊕ y′ = 0 No 3 42 101010 1 ⊕ y = 0 1 1
11 001011 y = 0 0 1 43 101011 1 ⊕ y ⊕ y′ = 0 0 V1 2
12 001100 1 ⊕ у′ = 0 0 1 44 101100 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
13 001101 1 ⊕ у′ = 0 0 1 45 101101 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
14 001110 1 ⊕ у′ = 0 0 1 46 101110 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
15 001111 1 ⊕ у′ = 0 0 1 47 101111 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
16 010000 y = 0 0 1 48 110000 1 ⊕ 0у ⊕ 0у′ = 0 No 3
17 010001 y ⊕ y′ = 0 No 3 49 110001 1 ⊕ у′ = 0 0 1
18 010010 0⊕0у⊕0y’=0 0 V1 2 50 110010 1 ⊕ y = 0 1 1
19 010011 y′ = 0 1 1 51 110011 1 ⊕ y ⊕ y′ = 0 0 V1 2
20 010100 1 ⊕ y = 0 1 1 52 110100 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
21 010101 1 ⊕ y = 0 1 1 53 110101 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
22 010110 1 ⊕ y = 0 1 1 54 110110 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
23 010111 1 ⊕ y = 0 1 1 55 110111 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
24 011000 y ⊕ y′ = 0 No 3 56 111000 1 ⊕ 0у ⊕ 0у′ = 0 No 3
25 011001 y = 0 0 1 57 111001 1 ⊕ у′ = 0 0 1
26 011010 y′ = 0 1 1 58 111010 1 ⊕ y = 0 1 1
27 011011 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2 59 111011 1 ⊕ y ⊕ y′ = 0 0 V1 2
28 011100 1 ⊕ y ⊕ y′ = 0 0 V1 2 60 111100 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
29 011101 1 ⊕ y ⊕ y′ = 0 0 V1 2 61 111101 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
30 011110 1 ⊕ y ⊕ y′ = 0 0 V1 2 62 111110 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
31 011111 1 ⊕ y ⊕ y′ = 0 0 V1 2 63 111111 0 ⊕ 0у ⊕ 0y′ = 0 0 V1 2
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Logical function (4) is minimizable. It is not difficult 
to identify that out of 40 constituents 27 constituents 1 are 
not simplifiable, while in 13 of them a generalized gluing 
is possible after a certain grouping, as shown below: К0 V 
К1, К8 V К9

с , К18
с V К19, К20 V К21 V К22 V К23, К19 V 

К23 , К26 V К27
с , К34 V К42 V К50 V К58. After gluing the 

minimal DNF (MDNF) contains 34 summands (instead of 
40 in PDNF). The simplification rate that is evaluated based 
on the proportion of letters in MDNF and SDNF is 0.925. 
The problem-solving algorithm using MDNF includes the 
following stages: 

1. Based on the notation of the equation (2) explicit ex-
pressions for Аi(X) are established.

2. Аi(X) is substituted into MDNF and у is set down in 
explicit form form using indicator functions.

3. In each disjunct Кi
c Кi is transformed into SDNF set 

down scalar product КiR with indicator variables rj.
4. All possible values of rj are searched through and all 

possible solutions are formulated.
5. Each possible solution is verified by substituting into 

the initial equation.
6. After the selection a set of solution is generated, one 

of which is specific, and all the others are general, includ-
ing one according to [4] with indicator functions identical 
or equal to 1. 

In order to find the solution of equation
 , (6)
it must be taken that А1 = А6 = 1, А2 = А3 = А4 = 0, А5 = 

х1 V х2 . The available sets 33 and 35 fall into groups 1 and 
2. As in set 33 the value у=0, then the range М1 in formula 
(4) is empty and the solution is

,
where К = А5 = х1 V х2 = x1x2′ V x1x2 V x1′x2 . For eight 

values of vector R there are eight values: 0, x1′x2, x1x2, х2, 
x1x2′, x1′x2 V x1x2′, х1, х1 V х2 , including the zero solution. 
That is the specific solution, while all the others are gen-
eral, one of which corresponds to [3]. Substituting those 
values in (6) shows that all of them are equation roots. The 
following probabilities correspond to the general solutions 
Рс = Р{y = 1} : q1p2, p1p2, p2, p1q2, q1p2+p1q2, p1, 1–q1q2. 
However, not all roots are always true. For example, if 
instead of (6) we take the equation 

 , (7)
we deduce four constituents 1, two of which are part of 

solution (4):
.

As we can see, there is no set Х, where К35 = 1, while 
root А5А6′ = x1x2 is wrong. That is the reason equation (7) 
has no solution.

In order to solve the equation: у = х1х2 V х2′х3 у, we must 
take А1 = А3 = А6 = 0, А2 = 1, А4 = х1х2 , A5 = х2′х3. Accord-
ing to table 1, to these Аi correspond four constituents 1 
with numbers 16, 18, 20 and 22. According to table 1, in 
set 16 the function equals to zero. The other three are part 
of solution of form (4)

.

After transition to К18 to SNDF and multiplication by 
R18 we deduce:

.
By searching through indicator values we will find four 

solutions: y1 =x1x2 , y2 =x1x2 V x1′x2′x3, y3 =x1x2 V x1x3, 
y4 =x1x2 V x2′x3 . Verification shows that there are now false 
roots. Solution у1 is specific, solution у4 according to [3]. 
Two more general solutions complement the full spectrum 
of solutions. The following probabilities correspond to 
those solutions: 

Of practical interest is finding the solvability (or insolv-
ability) conditions of an equation system. According to table 
1, there are 12 sets of values Ai numbered 3, 4, 5, 6, 7, 10, 
17, 24, 32, 40, 48, 56 that do not correspond to a solution. 
Ten out of them contain two or three ones. Five types of 
unsolvable equations correspond to those

  (8)
The first equation corresponds to constituents 1 numbered 

3 and 24, the second numbered 5 and 40, the third numbered 
6 and 48, the forth numbered 7 and 56, the fifth numbered 
10 and 17. The equation is not solvable if functions В(Х), 
С(Х) and G(X) under certain sets Х can simultaneously take 
on the value of 1. If that is not the case, then those equations 
can have solutions too.

Out of (8) can be deduced the solvability condition. After 
performing a generalized gluing in the first equation (8) 
based on у we deduce: 

.
For the first equation of (8) to execute, orthogonality 

of functions B and G is required in all sets of argument 
values

 . (9)
Out of the second, third and fifth equations of (8) we also 

deduce condition (9). Out of the forth equation by means of 
three generalized gluing operations we deduce

.
Therefore, the solvability condition

.
This condition absorbs condition (9). Thus, in order for 

the equations of type (8) to у solvable, functions B(Х), C(Х) 
and G(Х) must be orthogonal in all sets Х.

3. General solution of one equation 
with n unknown values

For all unknown values the equation is of the form
.

Let us select in F and В the part that is not connected to 
у1 and cut by у1 in the remaining part

  (10)
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This equation is identical in form with (2) if Аi = Ci (X, y2) 
и у = у1. Deeming (10) solvable for у1, we deduce a solution 
according to the rules of the previous class: 

 . (11)
Let us express (11) as
 , (12)
where R0, R1, R2 are vectors of indicator functions. As 

in (12) the second and the third summands are orthogonal, 
the disjunction operation can be replaced with a modulo 
2 addition, and then perform an orthogonalization of the 
first and remaining summands and proceed to a Zhe-
galkin’s basis

 . (13)
Using (13) let us generate a modified truth table (table 

2). In sets 0, 3, 4, 5, 6 and 7 value у1 is defined unambigu-
ously (group 1), in sets 1 and 2 functions у1 and у2 have two 
alternative values. 

Table 2. Modified truth table 

№
Item G0G1G2

Form of the 
equation y1 y2 Group

0 000 0 ⊕ 0 ⊕ у1=0 0 0V1 1

1 001 y2′ ⊕ y1=0 0
1

1
0 2

2 010 y2 ⊕ y1=0 0
1

0
1 2

3 011 1 ⊕ y1=0 1 0V1 1
4 100 1 ⊕ y1=0 1 0V1 1
5 101 1 ⊕ y1=0 1 0V1 1
6 110 1 ⊕ y1=0 1 0V1 1
7 111 1 ⊕ y1=0 1 0V1 1

By combining alternatives we deduce four solutions ac-
cording the truth tables (table 3). 

Table 3. Truth table 

№
Item G0G1G2

Solution 1 Solution 2 Solution 3 Solution 4
у1 у2 у1 у2 у1 у2 у1 у2

0 000 0 0 V 1 0 0 V 1 0 0 V 1 0 0 V 1
1 001 0 1 0 1 1 0 1 0
2 010 0 0 1 1 0 0 1 1
3 011 1 0 V 1 1 0 V 1 1 0 V 1 1 0 V 1
4 100 1 0 V 1 1 0 V 1 1 0 V 1 1 0 V 1
5 101 1 0 V 1 1 0 V 1 1 0 V 1 1 0 V 1
6 110 1 0 V 1 1 0 V 1 1 0 V 1 1 0 V 1
7 111 1 0 V 1 1 0 V 1 1 0 V 1 1 0 V 1

Let us find those solutions by introducing for у2 in 6 sets 
indicator functions Рi :

  (14)

 (15)

  (16)

  (17)

In order to find the solution of equation: 
,

let us transform the equation into (10):
 . (18)
Therefore С1 = С2 = С3 = С4 = 0, С5 = x1′V x2y2′, С6 = x1. 

According to table 1, out if four constituents 1 (К0, К1, К2 , 
К3) are eliminated, as for К2 we have: у1=0, and К3 is part 
of group 3. For К0 and К1 we have

 . (19)
After a simple transformation (19) is reduced to
 . (20)
By comparing (20) and (12) we deduce: G0 = x1x2′,  

G1 = x1, G2 = 0, K1 = K3 = K5 =K7 =0.
According to (14)
 . (21)
For verification, let us substitute (21) into (18).

.
The left part of the equation is not equal to the right one. 

Therefore, the first solution is not the root of the equation.
According to (15) solution 2 is as follows:

.
Here, it is required to search through the possible values 

of indicators Рi and deduce eight solutions for у2:
 . (22)
The verification shows that all solutions are roots of 

equation (18).
According to (16) solution 3 for у1 is identical to solution 

(21). Therefore, it is not the root of the equation. Solution 4 
is identical to solution 2. Finally, we have: у1=х1, and у2 we 
take from (22). Solution (22) corresponds to probability 

Let us consider the general case when one equation has 
n unknown values: 

 . (23)
Cutting in (23) by уn gives

. (24)
After comparing (24) with (8) we see that (24) falls in 

the first type of unsolvable equations. To make it solvable, 
condition (9) must be fulfilled:

  (25)
By comparing (25) and (10) we deduce: С1 = С2 = С3 = 

= С4 = 0, С5 = F1(1), C6=F1(0). According to table 1 let us 
write

  (26)
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Out of (25) we deduce
.

Then, solvability condition is generated again. By repeat-
ing operations n 3 times we deduce

.
From here, as in (26), we have
 . (27)
Next 
 

  (28)

Solution (28) has been found earlier and presented with 
formulas (14)–(17). Knowing that у1 and у2, we deduce 
using formula (27) у3, then from bottom to top all other 
unknown values up to yn. While performing this procedure 
the possibility of false roots must be taken into consideration. 
Therefore, at each step of the bottom-up motion verifica-
tion must be performed by substituting the solution in the 
respective equation.

4. Logical equation system

Logical equation system has the form of
 . (29)
Let us transform (29) into the canonical form

  (30)
The LES solution algorithm (30) consists of 2m-1 

steps.
Step 1. The first equation (k = 1) of system (30) is solved 

for у1 to find the function of Х and у1 = (у2, у3, …, уm ):
 

  (31)

Step 2. Out of the first equation of (31) solution is found 
for у2 and substituted in the rest of the equations

  (32)

Step m–1. Successive elimination from the equation 
system of the unknown values y1, y2, …,ym–1 results in 
system

 . (33)
Step m. The last equation (33) is solved using formulas 

of class 1 and deduce 
 . (34)
Step m+1. Solution (34) is substituted in the penultimate 

equation (33) and deduce 
.

Step 2m-1. Deduced is .
The resulting solutions must be verified.
In order to exemplify the algorithm, let us deduce solution 

of a system of three logical equations

  (35)
Specific solution (35) is deduced using the determinant 

method [5]

If у0 = 0, system (35) is homogenous and the specific 
solution is zero. In order to obtain a general solution at step 
1, in the first equation of (35) we deduce: С1 = С3 = С6 = 0, 
С2 = 1, С4 = σ1у0 V а12у2 , С5 = а11. Using table 1 we es-
tablish that we must consider four constituents 1 numbered 
16, 18, 20 and 22. We then eliminate К16. The rest results 
in solution

 . (36)
At step 2 let us substitute (36) in the second and third 

equations of (35)

 , (37)
.

The first equation of (37) is solved as

  (38)
At step 3 let after substituting (38) in the second equa-

tions of (37) we have

 (39)
Step 4 is skipped because у2 in system (37) does not 

depend on у3 . At step 5 let us substitute (39) in (36) and 
deduce

 . (40)
The total (38)–(40) gives general solution (35) that de-

pends on indictors R1, R2. If R1 = R2 = 1 we have
 , (41)

,
.

If у0 = 0 we have a general solution of a homogenous sys-
tem. Beside general solution (41) two more general solutions 
exist that correspond to sets (R1, R2) = (0,1) and (1,0). 

If pi = 1–qi = P{σi = 1}, pij = 1–qij = P{aij = 1}, using the 
formulas (41) by means of method of transition to complete 
replacement [5] we will deduce the probabilities 

 , (42)
 , (43)

 (44)
For a homogenous system, if R1= R2 = 1 the probabilities 

are deduced from (42) – (44), assuming that q1 = q2 = 1,  
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p1 = 0. For the specific solution (R1 = R2 = 0) probability Р1 
is deduced out of (42) where q11 = q21 = q22 = 1, probability 
Р2 is deduced out of (43) where q11 = q12 = q22 = 1, while 
probability Р3 is deduced using formula

For the general solution where R1 = 0, R2=1 probabilities 
Р1, Р2, Р3 are deduced respectively from (42)–(44), as-
suming that q11 = 1. For the general solution where R1= 1, 
R2=0 probability Р1 is deduced using formula (42) where 
q21 = q22 = 1, probability Р2 is deduced using formula (43) 
where q12 = q22 = 1, while probability Р3 is deduced using 
formula

Formalization of the listing of special conditions of 
operation and possibility to use them for the purpose of 
choosing the general solution is illustrated with the follow-
ing example.

Example. A system designed for transforming heat 
energy into mechanical consists of two subsystems con-
nected with a link (see figure). The subsystem includes 
turbine generators (components 1 and 8), steam generators 
(2 and 9), turbines (4 and 11), control equipment (3 and 
10), main capacitors (5 and 12), condensate pumps (6 and 
13), consumers (7 and 14). For normal subsystem opera-
tion a functioning feedback loop is required (components 
5 and 6 or 12 and 13) and availability of at least one power 
source (1, 8) to the consumer. Therefore, the general form 
of SHLF shall be

 . (45)
Here f1 and f2 are logical functions of operability of the 

part of the system from the output of the respective turbine 
generator to the consumer.

If F has the form of F = xp(xтг1 f1 V xtg2 f2 V f3), then if 
all components are in working condition (xi=1) the values 
of the indicators must be chosen in such a way as to fulfill 
the conditions:

If that is not so, the third summand absorbs the first two 
and the operability function can be equal to one even if the 
turbine generators are absent, which contradicts the physical 
essence of the system.

The logical equation system for the technical system 
under consideration has the following form

  (46)

It is required to find expressions for у7 and у14 taking 
(45) into consideration. The equation system is homog-
enous and, therefore, it must have zero specific solution. 
At the first step out of the first five equations of (46) we 
deduce

 . (47)
Solution (47) according to the method of class 1 has the 

form of

 . (48)
At step 2 of (48) of both the first and the second equations 

of of (46) we deduce

 . (49)
At step 3 of the equations for у10 –у13 of system (46) we 

deduce: у13 = х13 х12х11х10у9 .
Let us substitute (49) here ad solve the homogenous 

equation for у13:

 . (50)
Out of (49) and (50) follows that y9 = y13.
At step 4 out of equations for y10, y11 and y14 of system 

(46) in view of (50) we deduce:

 . (51)
In the same manner we deduce:

 . (52)
Out of (50) and (51) it follows that specific solution (46) 

is zero. After comparing (50) and (51) and (45) we see that 
special conditions are fulfilled only if R1 = R3 = 1, R2 = 0. 
Thus, finally we have

.

Fig. Technical system structure (1, 8 turbine generators; 
2, 9 steam generators; 3, 10 control equipment; 4, 11 tur-

bines; 5, 12 main capacitors; 6, 13 condensate pumps;  
7, 14 reducers).

Probabilities are deduced using formulas

.
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5. Conclusion

Logical and probabilistic analysis of a complex technical 
system is one of the key components of system design in 
many industries. Due to significant labour intensity, simply 
searching through the possible solutions is impractical. 
Logic equation systems significantly simplifies the analy-
sis process. The table-based method of a general solution 
of logical equations suggested in this paper extends the 
capabilities of system developers and enables the evalua-
tion of characteristics adequate to the logical structure. The 
definition of all general solutions with subsequent choice 
of one of them allow, using the indicator vector, taking into 
consideration special conditions of operation, including 
the use of cross-connections between parallel channels and 
feedback loops that support or improve system functions. In 
the presence of a multitude of general solutions in technical 
solutions, the task consists in the formal choice of the only 
acceptable solution by listing special logical conditions of 
system operation. 

At the stage of logical analysis it is possible not only to 
establish the existence of at least one general solution or the 
fact of insolvability of the equation system, but also find the 
causes and location of the formula’s logical inconsistency. 
That is quite relevant for algorithmically controlled resources 
as that enables a quick elimination of the uncovered incor-

rectness. The control of the system operation logic enables 
new ways of improving dependability and efficiency. The 
preferred application areas are energy, automated control 
and diagnostics systems. 
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