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Structural reliability. The theory and practice

Nosov М.В.

METHOD OF COMPLETE DECOMPOSITION OF BRIDGE 
CONNECTIONS IN CONNECTIVITY ANALYSIS PROBLEMS 
OF STRUCTURALLY COMPLEX BIPOLAR NETWORKS

The paper considers the method of complete decomposition of bridge (cross) connections of structurally 
complex bipolar networks whose content is the generalization algorithm of the well-known Moore-Shannon’s 
decomposition formula for analysis of connectivity of a ladder bridge bipolar network. The offered method 
allows for considerably reducing a number of analyzed states as compared to known combinatory methods, 
e.g. an exhaustion method of elements’ states [2].
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1. Introduction

1.1. Terms and definitions 

Bridge connection (BC) is a connection between two adjoining vertices vi and vj, i≠j, be-
longing to upper and lower “independent frames” respectively [2].

Connectivity is a property of bipolar networks to detain upstate and recover it during ac-
ceptable time in case of random and parametric failures, physical damages as well as deliberate 
and unintentional disturbances.

A graph is taken as random if its elements are either in upstate with the probability p, or in 
downstate with the probability q=1-p , where p is the coefficient of availability of a random 
graph’s element (RG) [2].

BN is a bipolar network; RG BN is a random graph of a bipolar network (see detailed 
definition of RG BN in [2]); MSDF is Moore-Shannon’s decomposition formula; EMES is 
an exhaustion method of elements’ states; MCDBC is a method of complete decomposition 
of bridge connections; CP is connectivity probability; BC is binominal coefficient; C is a 
combination; PBC is a vertex of a boundary couple; SCS is structurally complex systems; 
TCR is a theory of combinatory reliability.

1.2. Brief analysis of topicality and state-of-the-art of the problem 

Ladder bridge bipolar networks (whose number of bridge connections will be designated 
as mM) are widely used in telecommunication networks, power supply and transport networks, 
arrangement of public announcement systems etc. [3].

Availability of ladder bridge connections in BN increases the efficiency of their functioning 
while making it more difficult and time-consuming to analyze connectivity of such networks 
[2,4,5]. This is where the problem of connectivity analysis of RG BN with mM>1 bridge 
(cross) connections lies. 
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The problem of analysis of RG BN with bridge (cross) 
connections has been covered in a lot of works, whose inex-
haustive list can be found for example in works [5,6], which 
show that along with combinatory methods of connectivity 
analysis of such RG BN [2,3] logical probabilistic methods 
of reliability analysis of structurally complex systems have 
got widely used and developed [5]. Therefore, there is no 
common analytical approach to solve this class of hard 
solved problems [5].

There is an opinion that a universal approach to solve 
this class of hard solved problems is to use computers with 
special software [2,5].

The author of the work [5] comments this situation the fol-
lowing way: “We only have to develop special mathematical 
software based on a serious theory and approved analytical 
methods. The unavailability of those forces researchers to 
do direct and complete search of all system state on PC. 
Permanent increase of PC productivity supports their hope 
in this promising research way to prove and invent analyti-
cal methods without too much effort”. So, what we should 
have to do is to develop analytical methods that could be 
used in engineering.

A substantial contribution to solving the problem of reli-
ability analysis of BN with bridge connections was given 
by the work [1] that offered a decomposition formula for a 
one-bridge circuit (MSDF). Further works proved the pos-
sibility of applying MSDF for BN with mM>1. However, 
a one-bridge circuit proposed by C. Shannon was used to 
illustrate this possibility.

What is the reason of application of such illustrated exam-
ples? The reason is that the complexity and time-consuming 
character of practical implementation of MSDF for mM >1 
bridge connections is defined by increase of the number of 
all possible states (combinations) of analyzed RG BN with 
mM>1 bridge connections in proportion to .

Increase of the number of bridge connections mM brings 
quite a difficult task of ordering and taking account of all 
possible combinations (states) of analyzed BN. For exam-
ple, in work [5] this obstacle was “managed to overcome 
by means of a table method of SCS reliability calculation”. 
In this paper in order to not “go astray” in the labyrinth of 
various possible combinations with increase of the number 
of bridge connections mM of BN we use the decomposition 
algorithm for mM>1, whose basis is the properties of a bi-
nominal distribution and its binominal coefficients.

Scientific novelty of the paper is generalization of MSDF 
application for BN with mM>1 bridge connections based 
on the properties of a binominal distribution and its BC 
[6], defining the formal principle of development of the 
decomposition algorithm of initial RG BN with mM bridge 
connections (mM>1) in conditional parallel sequential 
RG BN.

The practical value is characterized by the possibility 
of using the offered method in applied engineering tasks 
of connectivity analysis of RG BN with mM>1 bridge con-
nections.

2. Initial data and problem statement 

Let structurally complex BN be set by graph G [7]:
 G = {V, L, Ф}, (1)
where V = {vi},  is a set of graph vertices whose 

number equals to mV = |V| – the power of the set of graph 
poles (number of elements of some set or some aggregate 
of elements is generally called its power); 

L = {li,j},  is a set of graph poles 
with the power mL = |L|:(i, j) – the numbers of vertices of a 
boundary couple (VBC) of the pole (li,j); 

Ф(li,j) = vi & vj is the representation of incidence and 
adjacency of graph elements such that if the pole li,j con-
nects the vertices vi and vj, then it is considered incident to 
the vertices of a boundary couple vi and vj; if the vertex vi 
is connected by the pole li,j with the vertex vj, then these 
vertices are adjacent to each other by the pole li,j.

The vertices of a graph connected to each other by poles 
make up a specific structure of a graph that could be both 
simple and complex and represents a graph’s capability to 
transmit information from its vertex of S-source to the vertex 
of t-drain, see fig. 2.

The poles of RG BN can have partial or through numera-
tion [7].

For partial numeration of poles we use their VBC vi and 
vj such that the order of numeration of poles is formally 
represented in the form 

 L = {li,j}, i < j & i ≠ j end . (2)
For through numeration vertices and poles of a graph will 

have the following numeration respectively:
 V = {vi},  end L = {lξ}, , (3)
where ξ is the designation of the sequence number of a 

pole.
Through numeration of a graph’s elements is (Fig. 1) is 

done in accordance with the following guidelines: from the 
vertex source S to the vertex drain t and from upper vertices 
to the lower ones. 

For the multiplicity of notation of vertices vi,  and 
poles lξ  in RG BN we will sometimes 
use only corresponding sequence numbers assigned to these 
elements  and .

Also, to reduce the difficulty of connectivity analysis of 
RG BN we will take a non-principal assumption that RG BN 
vertices are absolutely reliable (in Fig. 2 this assumption is des-
ignated as bold circles) and poles have the reliability equal to 

 . (4)
For the above initial data the problem is to offer a method 

for applying the properties of a binominal distribution and its 
binominal coefficients to develop a decomposition algorithm of 
RG BN with mM>1 bridge connections; to exemplify a practical 
implementation of this algorithm for decomposing initial RG 
BN with mM>1 bridge connections into conditional parallel se-
rial RG BN. Also, we will show that application of the method 
of decomposition allows for reducing the number of analyzed 
states by several tens (hundreds) times in relation to existing 
combinatory methods, e.g. MCDBC of analyzed RG BN.
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3. Application of the properties 
of a binominal distribution and 
its binominal coefficients for 
decomposition of bridge connections 
in bipolar networks 

Let each bridge connection  of RG BN can 
be in one of the two states: up state –  with the prob-
ability  or down state –  with the probability

. In this case the total number of all 
possible contradictory combinations for decomposing mM 
(mM>1) bridge connections 2 modulo will be equal to , 
 and each of them will include i down states and mM – i 
up states. The failure event of any bridge connection  
does not depend on the state of other bridge connections 
making up a combination from mM bridge connections via 
i, i.e. . Note that each combination  is a binominal 
coefficient (BCi).

Then for the purpose of ordering the process of generating 
all possible combinations from mM via i and their account-
ing for the connectivity analysis of RG BN with mM bridge 
connections (mM>1) it is reasonable to use a binominal 

distribution that is expressed by formula [6]

 
, (5)

where  is the probability that as a result of decomposi-
tion of mM bridge connections in combination  there will 
be i downstate bridge poles;

 is a binominal coefficient characterizing a number of 
combinations (states) which can be taken from mM bridge 
connections via i (here mM is the parameter of a combination 
(PaC), and i is a variable combination (VaC));

cofactor  is the probability of obtaining ;
 is the probability of finding a subset of bridge 

poles  in up state in BCi;
qi

 is the probability of finding a subset of bridge poles 
 in down state in BCi.

A regular series of binominal coefficients  
represents the well-known Newton’s binomial formula 
(NB) [6], which has the property of symmetry in relation to 
maximum binominal coefficients (MBC); БКi=0 character-
izes a combination when subset  of bridge 

Fig. 1.
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connections of graph G is in upstate;  characterizes 
a combination when a subset of bride connections is in 
downstate, i.e. .

If PaC has an odd value, then MBC will be only two 
(fig. 1, а). If PaC has an even value, then MBC will be one 
(fig. 1,б).

Fig. 1 evidently shows that first, BC in NB proceed sym-
metrically in relation to MBC owing to the fact that for set 

mM it is always  provided that 

0≤i1(2)≤ mM, i1≠i2 end i1+i2=mM.
Second, all BC are a combination of the type , and third, 

the total sum of all possible combinations is absolutely equal 

to . For example, see fig. 1, а: 

Technically, the procedure of composition of all possible 
combinations from mM via 0≤i≤ mM only for  
we will write down in the following way:

 

 (6)

where ω is the number of the current combination kω; 

 
is the combination sum (CS), making up exactly 

 formed combinations from mM variable via i;  

is the combination product (CP), combining  exactly i 

downstate bridge connections in one;  is CP, combin-

ing exactly mM – i upstate bridge connections in one ω-th 
formed combination.

For example, let it be that the analyzed RG BN lists 
three bridge connections with the numbers ,  and ,  
see fig. 2. Let them be positioned in the field of variables 
in the following order: . Then for 
mM = 3 combinations via (i=2) in PC will according to (6) 
look like: 

As should be, it is evident that exactly three combinations 

are formed for the case  (see fig. 1, and the 

third column left for i=2).

Technically, the procedure of ordered composition of all 
possible combinations from mM via  for all БКi is 
almost the same as in (6). There is only one CS for control-
ling i added. In general the procedure looks like:

  

(7)

Since all possible combinations make up the entire group 
of contradictory events, then the sum of all probabilities  

is equal to unity: 

4. Solution of stated problems

The offered method is in essence as follows. Let’s assume 
that it is required to determine the connectivity probability 
of structurally complex RG BN in which each ξ-th element 
can be found in one of two states: up state (designated as 
lξ) or down state (designated as ) with the probability  
q ( ) =1-P( ), set of graph poles with the power mL =|L|.

Then using the exhaustion method of elements’ states 
(EMES) for definition of connectivity probability of the 
specified vertex pair (poles) S and t in analyzed structurally 
complex RG BN it is required to analyze  of all possible 
states [3]. Obviously at increase in the number of structural 
elements in RG BN the quantity of analyzed states and, 
consequently, labor input of application of this method 
increases proportionally to the quantity .

Similar complexity and labor input are presented by other 
combinatory methods of complete search of all possible 
states of analyzed structurally complex RG BN.

Therefore, the problem of complexity and labor input re-
duction in combinatory methods of connectivity probability 
(CP) analysis can be solved based on reduction of number 
of the analyzed states describing initial RG BN.

The solution of this problem is possible based on applica-
tion of Moore-Shannon’s decomposition formula (MSDF) not 
only for RG BN single-bridge circuit, as shown in [5], but 
also for some subset of bridge connections LM = { }= , 
as part of analyzed structurally complex RG BN.

With such approach the number of analyzed states of 
initial RG BN is reduced proportionally to the following 
relation

 γ = K/KM, (8)
where K =  is the number of all possible states (com-

binations) of elements describing as a whole the structure 
of RG BN;

KM = is the number of all possible states (combinations) 
of bridge connections (shared edges) in the structure of 
analyzed RG BN, К » KM.
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Below is offered the algorithm of MSDF application for 
any number of bridge edges in analyzed RG BN structures, 
based on the properties of binominal distribution and its 
binominal coefficients (5). 

From the analysis of MSDF content [5] it is possible to 
notice, that it determines total probability of connectivity of 
poles (vertices) S and t in single-bridge RG BN which we 
shall express in the following form:

  (9)

where combinations  form a complete group 
of disjoint states of bridge (shared) connection

 
: ~ ;  

~ , where  and are designations of up state and down 
state of the shared edge respectively, p( ) + q( ) =1;

р( ) is the connectivity probability of poles S and 
t in RG BN Gs,t provided that the state of bridge edge  
is in up state, and therefore there is a joining of adjacent 
vertices by this edge;

р( ) is the connectivity probability of poles S and 
t in RG BN Gs,t provided that the state of bridge edge  is 
in down state, and therefore there is a disjoining of adjacent 
vertices by down state edge .

In view of the specified definitions the formula (9) will 
take the following form

  
 (10)

Let’s assume that arbitrary RG BN Gs,t is characterized by 
some subset  of shared edges forming 
a complete group of disjoint states (combinations):

 
,  (11)

where I is the designation of a complete group of disjoint 
(contradictory) states (combinations). Since all possible 
combinations (11) are contradictory and have a complete 
group, then the probability Ps,t of connectivity of initial 
structurally complex RG BN Gs,t according to (10) will be 
defined as

 
,  (12)

where p( ) = p( ) is the connectivity probability 
of RG BN , obtained as a result of transformation of the 
initial RG BN Gs,t provided that the state of bridge connec-
tions (shared edges) corresponds to combination . In line 
with this definition, formula (12) will be expressed in the 
following way:

 
 (13)

Formula (13) means a complete probability of connec-
tivity of poles S and t for analyzed RG BN Gs,t, in whose 
structure there is some subset of shared bridge edges

 .

Calculation of probabilities of combination  is 
made according to the above equalities (6), as well as (7) 
and (8).

As conditional graph RG BN  is formed as a result 
of decomposition of shared edges’ subset LM ={ }=  
of initial RG BN Gs,t into up states or down states and as 
a result of it there is accordingly a joining or disjoining 
adjacent vertices in RG BN Gs,t over the aggregate of the 
shared edges ,then in the structures of conditional RG 
BN  bridge connections are eliminated. By virtue of it 
calculation of connectivity probability of poles S and t in 
analyzed RG BN is made under formulas of series-parallel 
(parallel-serial) connection of elements.

For illustration of application of the offered method 
we shall determine probability of connectivity RG BN in 
whose structure there are three shared bridge edges  
and , see fig. 2.

Let’s accept that vertices 
 
of analyzed RG BN are 

absolutely unfailing, and the probability of staying of RG 
BN edges in up state p (lξ=9,19) = p =0,9.

We shall determine the complete group of disjoint states 
(combinations) of shared edges at their decomposition 2 
modulo as follows, according to equalities (6), as well as 
(7) and (8): 

 
 (14)

including: 

Write down combinations , corresponding to 
:  is the initial 
combination when all shared edges are in upstate;

is the resulting combination when all shared edges are 
in downstate.

To calculate the probability  of each state 

(combination) 
 
of analyzed RG BN (Fig.2) we shall 

use equality (6).
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Fig. 2. Three-bridged RG BN

As a result of decomposition of the initial three-bridged 
structure RG BN (fig. 2), according to binominal coefficients 
(7), we shall receive conditional RG BN  (i= ), whose 
structures are presented in fig. 3. 

In view of RG BN  conditional structures (fig. 3) we 
shall determine the total probability of connectivity of poles 
S and t for initial RG BN Gs,t (fig. 2) under formula (13):

  (15)

where 

The connectivity probability of poles S and t in ana-
lyzed RG BN for the accepted initial data is equal to  
Ps,t =0,955596.

Results of the comparative labor input analysis of the 
method of complete decomposition of bridge connections 
(MCDBC) as regards to EMES under the accepted parameter 
(1) are shown in Table 1.

From the presented results it follows, that with complica-
tion of analyzed RG BN structure we have:

Labor input of EMES grows exponentially (see 2-nd 
column of Table 1)

Labor input of MCDBE relatively to EMES is reduced 
proportionally to the size .

Thus, the problem of complexity and labor input elimi-
nation in exact calculation of connectivity probability of 
structurally complex RG BN has the analytical solution 
based on offered method of complete decomposition of 
bridge connections.

6. Conclusion

The possibility of MSDF application for the case when 
RG BN has more than one bridge connection has been 
proved in works [2,5,8].

The goal of the paper has been to consider a combinatory 
algorithm of practical implementation of the above possibil-
ity for solving problems of connectivity analysis of such RG 
BN variant where solution of choice of bridge connections 
is not required because it is solved a priori by the structure 
of analyzed RG BN, see fig. 2.

Fig. 3. Conditional RG BN 

Table 1. Labor input of MCDBE 

The name of analyzed 
RG BN

Number of analyzed states 
(hypotheses) EMES: K=

Number of analyzed states 
(hypotheses) MCDBC: 

Reduction of the number of ana-
lyzed states  (times)

One-bridged RG BN 32 2 16
Two-bridged RG BN 256 4 64

Three-bridged RG BN 2048 8 256
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However, the problem of defining bridge connections 
in analyzed structurally complex RG BN is considered 
fundamental in TCR whose basic provisions are stated in 
works [2,8].

Therefore, of scientific and practical interest is the 
solution of a twofold problem: 1) choice of aggregate 

 of bridge connections from their set 
L={lξ}=|mL|, as part of the initial structurally complex RG 
BN, and 2) their further practical application for calculating 
the connectivity of analyzed RG BN.
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