
82

functional safety. The theory and practice

Kolchin A.F., Mikheev N.V.

arcHiTecTure of safeTy relaTeD sysTeM sofTware

The paper presents the results of analysis of architectures for safety related system software. The basic
components of architecture are defined, and the definition of safety related system software architecture is
offered. Quality criteria are proposed, and comparison of defined components by the criteria is carried out.
The paper offers results of comparison of applicable structures and styles that are proposed for application
in software development to satisfy to the functional safety requirements specified in GOST R IEC 61508.

Keywords: dependability, functional safety, architecture, software.

introduction

The modern trend to place stricter safety requirements for hazardous technical systems has
led to application of not only sufficient but also indeed necessary safety measures. However
it requires some quantitative estimation of applied safety measures, which is possible and
necessary to specify prior to the development of such systems.

For estimation of safety related system hardware, one generally uses statistical methods
which allow us to obtain quantative estimation of hardware dependability. Similar methods
are inapplicable for software, as errors arising in software during its development and opera-
tion are systematic.

One of the approaches integrating methods of dependability estimation both for hardware
and software is the methodology of functional safety presented in GOST R IEC 61508 [1]. The
given standard covers the development of relatively simple systems ensuring the performance,
as a rule, of one function, i.e. safety function, and referring to as “safety related systems.”

One of the key stages in software development for safety related systems is the development of
software architecture. However, comprehensive guides on development of software architecture
are not available at present. Existing studies consider either particular subtypes of architecture,
or general methods of designing. One of the reasons hampering knowledge systematization in
the area is absence of the generally accepted definition of software architecture.

This paper presents the results of analysis of architectures for safety related system software.
The basic components of architecture are defined, and the definition of safety related system
software architecture is offered. Quality criteria are proposed, and comparison of defined
components by the criteria is carried out. The paper offers results of comparison of applicable
structures and styles that are proposed for application in software development to satisfy to
the functional safety requirements.

1. safety related system

1.1. system structure

Sufficiently long experience of development and application of safety related sys-
tems in various areas allow us to assert that the structure of such system has already

83

arcHiTecTure of safeTy relaTeD sysTeM sofTware

become well-established and consists of the following
elements:

1. Programmable electronics:
а) controller, which is executing the logic and realizing

the interaction between components;
б) software executing the logic.
2. Input /output devices and auxiliary means:
а) sensors and other input devices;
б) executive devices and other output devices;
в) power supplies, communication medium, etc.

1.2. system requirements

According to the life cycle model of a safety related
system [1], by the start of the development process of
its software architecture, a great volume of documents
describing the controlled equipment, safety functions and
various requirements for software system identified at
previous stages is developed. Many requirements are typi-
cal for the majority of developed safety related systems.
The analysis of requirements for the structure described
above has allowed us to identify the following require-
ments and restrictions for a safety related system essential
for software:

1. Strictly specified maximal time of system response.
2. Software under development is intended for execution

on programmable controllers with limited resources.
3. Software is strongly connected with lower level tasks

(for example, input/output), therefore it is strictly tied to the
operating system (or even implements its functions).

4. Absence of necessity for storage of great volumes of
data.

5. Absence of a complex business logic, as in most cases it
is strictly not recommended to implement non-safety related
functions on a controller1.

6. Interaction with a user should be minimal, operation
is basically autonomous.

1.3. requirements to software architecture

It is possible to distinguish three groups of software
architecture requirements [1]:

1. Requirements of safety integrity level (SIL) for soft-
ware architecture and designing tools.

2. General requirements stipulated by a safety related
system. These requirements can influence architecture
directly or indirectly.

3. Special requirements for software stipulated by hard-
ware architecture.

The first group includes various requirements, for exam-
ple, for documentary registration of process, traceability,
etc. The given group also includes methods of architecture
development required for specific application depending on
a safety integrity level.

The second group includes restrictions for resources, sizes,
interfaces of input-output, etc., which depend on a specific
task. However, it is possible to state that the given require-
ments basically limit architecture resource demand [2].

The source of the third group can be a type of devel-
opment, for example, if it is necessary to build a system

1 In [1] there are no restrictions as for the size or complexity of
programs, however with increase of requirements for system fault
tolerance, methods of its SIL ensuring become more complicated,
therefore it is recommended to realize more simple (or to realize in
part) safety functions on a separate safety related system.

Table 1. Advantages and disadvantages of program structures

Structure Advantages Disadvantages

Simple control
loop Simplicity

The worse time of reaction is equal to the
sum of execution times of all subtasks.
 When adding new devices or supplemen-
tary processing, the worse time of reaction
increases

Interrupt con-
trolled system

Allows essentially increasing the time of reaction for high-
priority subtasks in comparison with a simple control loop.
It is development of idea of simple control loop, but it still re-
mains sufficiently simple

The problem of split memory, as when
there is an interruption, the basic stream
can stop in the middle of calculations
while the code carried out on interruption
can change the given memory

Cooperative
multitasking

There is no necessity to protect all shared data structures.
Simplifies process of one-thread code transition into multi-
threaded environment.
Simple enough expansion of functionality (by subroutine addi-
tion in execution queue)

In case of failure of a single thread, all
others also fail as the operation “to give
processor time” is not called.
High complexity of multithreaded input-
output

Preemptive
multitasking /
RTOS

The possibility of adequate realization of multithreaded input-
output.
The possibility of multiprocessing systems use.
A single failed program does not affect other programs.
In case of absence of shared memory use, a programmer can
develop the software as one- thread program – the whole op-
eration is executed by an operating system

Overhead resources for execution tasks by
operating system itself.
Strong complication of a system as a
whole.
A problem of shared memory

arcHiTecTure of safeTy relaTeD sysTeM sofTware

84

Table 2. Comparison of considered program structures by quality criteria

A
n

op
po

rt
un

ity
 o

f
su

br
ou

tin
es

 p
ri

or
ity

se

tt
in

gs

In
de

pe
nd

en
ce

 o
f t

he

w
or

se
 ti

m
e

of
 r

ea
ct

io
n

fr
om

 th
e

nu
m

be
r

of

su
br

ou
tin

es
In

de
pe

nd
en

ce
 o

f t
he

w

or
se

 ti
m

e
of

 r
ea

c-
tio

n
fr

om
 a

 su
br

ou
tin

e
ch

an
ge

G
en

er
al

 si
m

pl
ic

ity
 o

f
sy

st
em

 im
pl

em
en

ta
-

tio
n

Si
m

pl
ic

ity
 o

f s
ub

ro
u-

tin
es

’ r
ea

liz
at

io
n

Si
m

pl
ic

ity
 o

f s
ub

ro
u-

tin
es

’ a
dd

iti
on

A
bs

en
ce

 o
f t

he
 o

ve
r-

he
ad

 e
xp

en
se

s w
hi

ch

ar
e

no
t c

on
ne

ct
ed

 to

th
e

ba
si

c
lo

gi
c

A
n

op
po

rt
un

ity
 o

f
si

ng
le

-t
hr

ea
d

co
de

w

ri
tin

g

In
de

pe
nd

en
ce

 o
f s

ub
-

ro
ut

in
es

Simple control
loop - - - + + + + + -

Interrupt con-
trolled system - - - + - + + - -

Cooperative
multitasking

It is set by
the pro-
grammer

- - - - + - - -

Preemptive mul-
titasking / RTOS + + + - + + - + +

Designations: “+” – criterion is applied; “-” – criterion is not applied.

Table 3. Advantages and disadvantages of style architectures

Architecture Advantages Disadvantages

Conveyors and
 filters

The possibility of representation of the program
whole behavior as a simple sequence of separate
filters.
A reuse of filters.
Simple addition of new functionality by adding
a filter to a processing queue.
It is possible to carrying out special checks,
such as the analysis of mutual blocking or filter
capacity.
Potentially simple multisequencing of a code

The organization of batch processing is frequently
required.
In view of filters’ independence requirement, the
designer should believe that the data are complete-
ly processed by each filter. In particular, it can be
demanded each time to reduce data to a common
view and to assort them separately in each filter

Data abstraction
and object-oriented
organization

The possibility of implementation change with-
out consequences for clients.
Combination of data and functions which proc-
ess them allows designers to decompose the
task down to a set of entities cooperating among
themselves

In view of specificity of the procedural calls, the
calling object should have explicit access to the
called object, as opposed to conveyors or to event-
trigger system. As a consequence, when changing
an object identifier, it is required to explicitly no-
tify all calling objects.
Presence of outside effects is possible (for exam-
ple, if an object A uses an object B and an C also
uses the object B, then the changing of the object
B by the object C look as a outside effect for the
object A and vice-versa)

Event-trigger
 system, implicit call

Ample possibilities for system reuse: the system
can be extended by a new component by simple
registration as events’ handler.
The implicit call simplifies system development:
any component can be altered or replaced with-
out influence on other components

The control over executed calculations belongs not
to software components but to a system.
There is no guarantee of reaction to an event.
As consequence of the previous statement, con-
firmation of reaction to the event should be made
explicitly.
Complex procedures of mass data exchange

Level-sensitive
(layer-wise) system

Easy escalating abstraction. Ample opportunities
of reuse, similarly to abstract types of data. The
opportunity of realization of separate levels in
different ways by the declaration of interfaces of
interaction between levels

Not all tasks can be decomposed simply enough
down to a level structure. It is difficult enough to
define a suitable level of abstraction. Presence of
an additional overhead charge in view of transla-
tion of abstraction from one level to another

85

arcHiTecTure of safeTy relaTeD sysTeM sofTware

under development above the available base provided by
a controller manufacturer. Besides, it can be connected to
features of hardware when a chosen controller implements
special technology optimized for the certain architecture
of software.

Software is usually developed using three different
ways [3]:

a) Development of new software based on a specifica-
tion.

b) Software development for integration into an existing
platform. This process is focused not on software designing
and development, but rather on mapping required functions
on the given program framework.

c) Existing software improvement. The given process
is not considered in this study as actions on improvement
substantially depend on an updated system.

Both alternatives (a) and (b) are acceptable for develop-
ment of software for a new system, as integration into an
existing platform is considered as reuse of already existing
software, rather than its improvement.

2. Designing of software architecture

2.1. Definition of software architecture

Among developers of various systems, there is a general
understanding of the importance the architectural level of
a system under development. However, at present there is

none established consent on the exact definition of a system
architecture.

The analysis carried out so far has shown that software archi-
tecture of safety related systems can be presented and described
with the help of the following three invariant constituents
(which are named sometimes as architecture patterns):

1. Program structure [4] describes ways of organiza-
tion of base functions, such as memory management, flow
control, etc.

2. Architecture style [5] describes the method of logic
division of a system, which is realized on the basis of sys-
tem structure.

3. Task solution, described in terms of program structure
and architecture style.

Thus, in this paper as architecture of safety related sys-
tem software, we shall understand a set of conceptions and
descriptions of:

program structure;
architecture style;
executed safety function in terms of program structure

and architecture style.

2.2. Program structure

Safety related systems are in fact a subclass of embed-
ded systems, and therefore, versions of program structure
organization are rather similar to the versions used in
common embedded systems. For implementation of safety

Table 4. Comparison of architecture styles

Simplicity Supportability Design reuse Efficiency Scalability Portability

Conveyors
and filters +

+
It is easy to re-
place a filter

+
Allows achieving
different effects due
to change of the
order

-
There is no inter-
relation between
filters (it is impos-
sible to transfer
control from one
filter to another

± -
Not portable

Data abstrac-
tion and ob-
ject-oriented
organization

±

+
Set of principles,
allowing increas-
ing abstraction
(encapsulation,
inversion of con-
trol and so on)

+ ± ± ±

Event-trigger
system, im-
plicit call

-
Sometimes
the behavior is
unpredictable,
it is difficult to
control

+
It is possible
to replace or
remove a compo-
nent without in-
fluence on others

+
Components can be
registered in a sys-
tem for processing
any events

-
Components have
no possibility to
control calculations

-
Outside effects
can arise if two
components
use the third
one

+
Components
can react to any
events

Level-sensi-
tive (layer-
wise) system

±

+
Change of one
level influences
only two neigh-
boring levels

+
Do not depend on
overlying levels

±

+
Can be incor-
porated with
other styles

Designations: “+”– criterion is applied; “-” – criterion is not applied; “±”– criterion is applied partially.

arcHiTecTure of safeTy relaTeD sysTeM sofTware

86

related system software, it is possible to use the following
program structures [6]:

1. Simple control loop.
2. Interrupt controlled system.
3. Cooperative multitasking.
4. Preemptive multitasking or multi-threading.
5. Other versions of real time operating systems.
Table 1 shows the advantages and disadvantages of the

listed structures at development of safety related systems
identified as a result of the analysis, which allowed us to
define the following criteria of comparison of considered
structures.

1. Possibility of setting of subprograms priorities.
2. Independence of the worst time of reaction:
а) from the number of subprograms;
б) from subprogram change.
3. General simplicity of system realization.
4. Simplicity of subprogram realization.
5. Simplicity of subprogram addition.
6. Absence of overhead expenses not related to the basic

logic of the task under solution.
7. Opportunity of one-thread code writing.
8. Independence of subprogram s.
Table 2 presents comparison of the considered structures

by defined criteria.

2.3. architecture style

There is a good deal of various architectural designs
frequently named as architecture patterns, which represent
solutions within the framework of some repeating context.
At present there is not any common list of similar patterns,

or even a common opinion concerning their abstraction,
however within the framework of the problem considered
in the present study it is possible to identify the following
set of architecture patterns1 (or styles) [3]:

1. Pipes and filters.
2. Data Abstraction and Object-Oriented Organization.
3. Event-based, Implicit Invocation.
4. Layered system.
Table 3 considers the advantages and disadvantages of

the listed program styles at development of safety related
systems.

The following criteria of quality [7] have been used in
this study for comparison of architecture styles:

1. Supportability – a degree of simplicity of change in-
troduction (addition of new handlers, removal of old ones,
updating existing ones, etc.).

2. Repeated usability – a degree of applicability of exist-
ing program constituents for creation of new ones.

3. Efficiency.
4. Simplicity – system understandability for new develop-

ers, possibility of quickly understanding existing modules.
5. Scalability.
6. Portability – absence of binding to certain tools (to

the development environment, operating system, compiler,
etc.).

Considered styles presented in Table 4 are compared by
the listed criteria.

Undoubtedly, not all styles can be applied at implementa-
tion of the considered programs’ structures. Table 5 shows

1 Certainly, both the combinations of mentioned architectures and
completely new ones are possible.

Table 5. Possible combinations of architecture structure and style

Simple control loop Interrupt con-
trolled system

Cooperative
multitasking Preemptive multitasking/ RTOS

Conveyors and
filters

There are developments
showing the possibility to
effectively process data in
such a configuration, how-
ever the basic scope of
the given combination of
technologies is a network
traffic control [7]

Generally such
combination is
not applied

Conveyors and
filters can be
considered as
a cooperative
multitasking al-
ternative

A combination is possible

Data abstraction
and object-oriented
organization

A combination is possible A combination
is possible

A combination is
possible A combination is possible

Event-trigger sys-
tem, implicit call

As a matter of fact, RTOS (Real-Time
Operating System) is the operating sys-
tem based on events. At least, it is one
of the basic tools, allowing prioritizing
separate processes. Also, transfer of
event is the simplest way of interaction
between streams.

Level-sensitive
(layer-wise) sys-
tem

A combination is possible A combination
is possible

A combination is
possible A combination is possible

87

arcHiTecTure of safeTy relaTeD sysTeM sofTware

all possible combinations of the structures and program
styles considered above. Application of the given table will
allow enhancing correctness and efficiency of development
of safety related system software, when selecting software
architecture.

2.4. The task solution

As follows from the definition, when shaping architecture,
the high-level representation of safety functions is used, and
not its specification generated at the corresponding stage of
safety related system life cycle. Necessary detailed elabora-
tion is selected based on requirements for the safety related
system under development. In particular, for software archi-
tecture the following things should be described:

1. The basic system components, their interfaces, arrange-
ment and methods of interaction with each other.

The architecture should reflect a high-level representa-
tion of system (subsystem) components, the most important
ones from the point of view of the majority of software
development participants as they have to be taken into ac-
count during development of the majority of other system
components. Some subsystems are required for operation
of the majority of components (for example, input-output
subsystem encapsulating a physical level of interaction with
communication channels). Other subsystems are sources
of events for miscellaneous components (for example, a
watchdog timer). The third components can be the most
resource-intensive and/or critical for performance of the
system basic function – safety function.

2. Key patterns of designing and technologies used in
the project.

As certain patterns can influence the program as a whole
(for example, connections pool), they have to be described
at the architecture level. Including the patterns which are
allowable to use at lower levels.

3. Interfaces of interaction with external systems.

4 The services providing support for basic functional
operation (journalizing, data storage, etc.).

conclusion

The paper presents the results of analysis of software ar-
chitectures and their development for safety related systems.
Also, the basic components of architecture are defined.

The definition of software architecture for safety related
is offered.

The paper offers results of comparison of applicable
structures and styles that are proposed for application in
software development to satisfy to the functional safety
requirements [1].

The application of the considered approach will allow
enhancing the correctness and efficiency of software devel-
opment for safety related systems at the stage of software
architecture selection.

references

1. GOST R IEC 61508-2012 Functional safety of electri-
cal, electronic and programmable electronic safety related
systems. Parts 1 – 7.

2. Philip J. Koopman Jr., Design constraints on embed-
ded real time control systems. Systems Design & Networks
Conference, (1990).

3. Douglas Densmore, Roberto Passerone, Alberto
Sangiovanni-Vincentelli, A Platform-Based Taxonomy for
ESL Design. IEEE Software.

4. David Stonier-Gibson, Understanding embedded
microcontroller multitasking RTOS alternatives.

5. David Garlan, Mary Shaw, An Introduction to Soft-
ware Architecture.

6 . h t tp : / / en .wik iped ia .o rg /wik i /Embedded_
system#Embedded_software_architectures.

7. Mary Shaw (1995), Comparing Architectural Design
Styles. IEEE Software.

