
72

Functional safety. The theory and practice

Kharlap S.N., Sivko B.V.

DEVELOPMENT OF HIGH-RELIABLE SYSTEMS BASED ON
THE METHOD OF CROSS CHECK OF AxIOMATIC BASES

Based on the method of cross check of axiomatic bases, there have been developed reliable fail-safe
microprocessor systems. They have been tested for reliability and fail-safety by using a set of simulation
safety tests (SST). It has been revealed that reinforcement of the checking axiomatic basis allows us to
improve fail-safety parameters. It has been shown that the cross check of axiomatic bases enables to
develop fail-safe and reliable systems with target properties.

Keywords: functional safety, formal methods, fail-safety, failure detection, IT critical objects.

Introduction

Modern safety critical systems face enhanced requirements as to both reliability and
functioning safety. To ensure a respective quality, certain measures are required to be taken
to improve fail-safety indices. One of the purposes of such measures is to detect failures to
be followed by a reaction in the way of transition into safe state or restoration process. As
nowadays this problem does not have one solution, it remains pertinent to develop methods
and tools for efficient detection of failures [1].

This paper describes peculiarities of the development and testing for functioning safety of
hardware and software complex (HSC) constructed on the basis of cross check of axiomatic
bases [2].

To estimate the efficiency of the method, it is necessary to check the results of its applica-
tion in practice. At present simulation modeling is used for this purpose as a practice enabling
to carry out a total cycle of development and verification with minimum expenditures in a
lab environment. In this regard a program set of simulation safety tests (SST) was chosen
as a simulation tool intended for simulation tests for functional safety in accordance with
IEC 61508, EN 50126, ОSТ 32.146 of microprocessor systems of control of safety related
processes [3]. By means of SST it is possible to introduce different failures of hardware, as
well as to analyze further behavior of the system under consideration.

The test object is HSC, with a microcontroller PIC16F877A within its scope.
When developing fail-safe systems, the recommended practice is the protection against

certain types of failures which are known and typical for this hardware. In this case, the choice
of the variety of failures to be protected against is due to the requirements of IEC 61508-
2:2010. Therefore, we consider failures of used memory cells: stuck-at faults as well as
bridging faults.

Based on the method requirements, two bases are initially required which are independent
and diverse [4]. The first basis A is proper operation in the context of failures of one byte of
random access memory (X). The second basis B is similar conditions for a microcontroller’s
accumulator (W) and a carry flag (C). Cross check is shown in Fig. 1, where A basis is check-
ing B basis by a function s1, and B basis is checking A basis by a function s2. The system

73

DEVELOPMENT OF HIGH-RELIABLE SYSTEMS BASED ON THE METHOD OF CROSS CHECK OF AxIOMATIC BASES

performing this task contains a target function f, which is
performed on both bases.

Fig.1. Cross check of bases

Development of a reliable system

As a failure detection signal as the result of basis check,
it is convenient to choose two digital lines (let us call them
SAFE_A and SAFE_B), which can be in states of logical 0
or 1, or refer to the microcontrollers ports. In case of a suc-
cessful operation of the system, a variable signal (0 or 1)
is sent to SAFE_A and SAFE_B. When one of the bases is
disrupted the respective output gets a constant value 0.

An external signal of the described type is easy to realize
and process, and based on this signal one can use external
hardware enabling to solve the situation in case of failure,
for instance, to transfer the system into safe state.

The algorithm is as follows:
1. To set SAFE_A=0.
2. To check B basis by means of A basis.
3. If B is performed, SAFE_A=1 should be set.
4. To set SAFE_B=0.
5. To check A basis by means of B basis.
6. If A is performed, SAFE_B=1 should be set.
7. Pass to step 1.
Thus, the considered system performs only constant

check of bases and depending on the results, it forms output
signals SAFE_A and SAFE_B. Every signal can be either
variable (~), or constant (0), based on which it is possible
to detect failures (Table 1).

Table 1 – States at the detection of failures

No SAFE_A SAFE_B Description

1 ~ ~ No failures,
Both bases are performed

2 ~ 0 Basis B is performed,
Basis A is disrupted

3 0 ~ Basis A is performed,
Basis B is disrupted

4 0 0 One basis is disrupted, or both
of them are disrupted

To comply with safety requirements in case of disruption
of A basis, the system shall reliably transit to state 2 and 4

as per Table 1. Similarly, when B basis is disrupted there
should be a transit to state 3 or 4.

The system is considered to be fail-safe for states 1, 2
and 3 of Table 1. In this case one of the bases is performed,
and the functionality realized on the respective basis is
considered as fault free.

Table 2 presents a subprogram in the assembler language
of microcontroller PIC16F877A [5] performing the check of
A basis based on B basis. This subprogram is the implementa-
tion of steps 5 and 6 of the algorithm. As the execution of the
subprogram takes finite time, which is for sure more than a
specified limit, then in case the bases are correct, a variable
signal will be received at the output of SAFE_B.

Table 2 – Program check of A basis

Action Program

Check of stuck-at-1 fault

clrf X
movf X,0

addlw 0x0ff
btfsc STATUS,C

return

Check of stuck-at-0 fault

movlw 0x0ff
movwf X
movf X,0

addlw 0x01
btfss STATUS,C

return

Check of
wired AND/OR failure

for near-by bits
(bridging fault)

movlw 0x0aa
movwf X
movf X,0

addlw 0x055
addlw 0x01

btfss STATUS,C
return

Signaling of success
of basis check

bsf SAFE_B
return

To check the capacity of the developed program for
failure detection, the considered HSC was realized in SST,
where simulation tests were carried out. According to the
bases and failures detected, there was composed the list of
failures to be checked:

– SA0(W), SA1(W), stuck-at-0 and 1 of accumulator, 16
failures;

– B(W), wired AND/OR of accumulator (14 failures);
– SA0(C), SA1(C), stuck-at-0 and 1 for C flag (2 fail-

ures);
– B(C), wired AND/OR of STATUS register, affecting C

flag (2 failures);
– SA0(X), SA1(X), stuck-at-0 and 1 of X memory cell

(16 failures);
– B(X), wired AND/OR of X memory cell (14 failures).
Test program included the registration of every single

failure, as well as the check of operation without failures.
Based on the received graphs of the signals SAFE_A and
SAFE_B failure response of the system was defined. The

DEVELOPMENT OF HIGH-RELIABLE SYSTEMS BASED ON THE METHOD OF CROSS CHECK OF AxIOMATIC BASES

74

results of simulation modeling based on the given failure
list is provided in Table 3 (tests 1). Tests 2 of Table 3 were
carried out with software (SW) that had been modified to
increase fail-safety (it will be discussed later).

The tests showed that when entering most of the de-
scribed failures, both signals SAFE_A and SAFE_B passed
to stuck-at-0. First of all, the important result is the fact
that the check of a respective basis was always successful,
i.e. if any basis checks the second one, and the latter is
not performed due to a failure, the first one always makes
signals about the problem. In other words, initially it was
mathematically proven that in case of the registration of
one of the considered failures, the system shall always pass
into the state signalling about the problem of a respective
basis. It was confirmed in practice of simulation modeling
when A basis was disrupted, signal SAFE_B always passed
to 0 state (and when B was disrupted, signal SAFE_A also
passed to 0). By that it was shown that in case of failures the
system always passes into safe state that gives an evidence
of a successful application of the methods in terms of the
development of a reliable system.

Table 3 – Results of tests of a reliable system

Failures
States of output signals

Tests 1 Tests 2
SAFE_A SAFE_B SAFE_A SAFE_B

–
SA1(W1,3)

SA1(W0,2,4..7)
SA0(W)

B(W)
SA0(C) SA1(C)

B(C)
SA0(X)
SA1(X)

B(X)

~
0
0
0
0
0
0
0
0
0

~
0
0
0
0
0
~
0
0
0

~
0
0
0
0
0
0
0
0
0

~
~
0
0
0
0
~
0
0
0

Note:
0 – pass to stuck-at-0;
~ – a variable signal as per the requirements;
Wi – the i-th bit of W register.

In addition to that in most cases when A basis was dis-
rupted, signal SAFE_A also passed to 0 state. This behavior
comes from the fact that the check of B basis by a disrupted
A basis turned out to be so sensitive that it sent the signals
about s disruption of B basis despite the latter stayed correct.
Exclusions were the failures of B(C), which did not affect
the output signal, as this resource (a nearby bit to C flag of
STATUS register) was not involved in the check logic.

An additional conclusion from the results is an increase
of fail-safety that holds when one of the signals SAFE_A/
SAFE_B is stuck-at-0 (0), and the other one is (~). The test
results showed no increase of fail-safety in most cases, which
comes from sensitivity of bases check, and from that fact
that there were no additional measures taken to improve
the fail-safety.

Improvement of fail-safety
by basis enhancement

To improve the fail-safety, one can construct the software
in such a way that the system could be a subject to failures
in a less degree, i.e. the basis should be enhanced. This is
possible when software uses fewer amounts of resources.
For this purpose a program code for a check of A basis was
changed to stuck-at-1 (Table 4).

The modified SW was a subject to the second tests which
results are listed in table 3 (tests 2). SW was modified in
such a way that only a high nibble of an accumulator that
was used as a resource, and a low nibble was not involved.
As a consequence, for two failures SA1(W1) and SA1(W3)
the system started detecting the problem only at one of the
bases that proves the improvement of fail-safety.

Table 4 – Modified check of A basis at SA1

Action Program

Check of
stuck-at-1 fault

clrf X
movf X,0

addlw 0x0f0
btfsc STATUS,C

return
swapf X,0

addlw 0x0f0
btfsc STATUS,C

return

Failure diagnostics changed for two bits of an accumu-
lator and for SA1 failures, despite the fact that only one
half-byte (4 bits) is used for check, and in other further
checks – all bits of the register. Here it is explained by two
reasons. Firstly, a further check for SA0 failure checks only
the passes from 1 to 0, which is why it is sensitive for SA1,
but is independent of SA0. Secondly, a check for B(W) uses
half of bits as 0, and the second part is used as 1. Conse-
quently, SA(W0) and SA(W2) failures war detected as the
failures of wired AND/OR.

In terms of cross check of axiomatic bases, a program
modification brought the system to the state shown in
Figure 2.

Fig. 2. Consolidation of basis to improve fail-safety

A check function s2 got based on a smaller basis (which
is stronger) and it made the system immune to the respec-

75

DEVELOPMENT OF HIGH-RELIABLE SYSTEMS BASED ON THE METHOD OF CROSS CHECK OF AxIOMATIC BASES

tive failures. Therefore, enhancement of bases enables to
improve the system fail-safety, which means that at the
development one should choose a stronger basis which is
subject to failures in a less degree.

It should be noted that the basis enhancement has no
influence upon reliability of the system in case of failures.
Thus, the above described method could be used to improve
fail-safety of systems without loss of reliability.

Development and testing
of a fail-safe system

In practice the system functioning requires more re-
sources (memory, input-output devices, etc.), than the
checking operations. That is why enhancement of bases for
improvement of fail-safety is a complicated task which is
not always feasible. In such situation in terms of axiomatic
bases to improve fail-safety it is possible to split the tasks
of reliability and fail-safety, with further diversification, as
it is shown in Figure 3.

Fig. 3. Fail-safe diverse system

Four bases are analyzed here – A, B, FA and FB. A basis
is stronger than FA basis (a disruption of A basis results
in disruption of FA basis) and this basis is used to check
FB basis by means of the function s1 (similar for the
bases B, FB, A and the function s2). Two implementa-
tions of the function f are based on the bases FA and FB
which are independent of each other. If the check of
basis is successful (for instance, the result is s1), then
the function f based on the respective basis (FB) can be
performed safely.

For the described realization, failures disrupting A basis
or B basis bring the system to safe state, and when FA or FB
are disrupted when performing A and B , the system stays
fail-safe.

To test the mentioned method of fail-safety improvement,
the reliable system already tested (tests 1) has been improved
by adding of the functionality to generate a digital signal
from a microcontroller in form of sequence of zeros and
ones (01010101 and 11101000 respectively). That means
that SW operating on an inner cycle changes an output signal
to 0 or 1 on every cycle (in accordance with the specified
sequence). For this purpose the memory keeps a word of
one byte over which a cyclic shift is made, and a higher bit
goes to an external port. Operation of the system with no
failures is shown in Figure 4.

Fig. 4. Operation of the system with no failures

For realization of the described functionality every
basis needs an additional memory byte, which may be-
come subject to failures (byte M for A basis, and byte N
for B basis). The sequence of algorithm actions, which
bases they are based on, as well as the description are
given in Table 5.

Distribution of operations between bases follows from
the aspects of bases check and the resources used. As
the basis check implies a change of memory cells, and
their content is required to be kept to accomplish a task,
then during a check it is necessary to make a copying,
which is performed on the other basis, then a check is.
All actions related to the calculation of the function f
are realized on the respective basis (FA or FB), which
ensures fail-safety of one them in case the other one is
disrupted.

A necessity to distribute actions between the bases can
be considered in a form of the rule according to which it is
necessary to use the basis to be checked, for service opera-
tions during preparation of check procedures. For example,
the check FA is performed based on B, and all service opera-
tions are required to be performed on FA.

For the described system a test program was carried
out, the results of which are shown in Table 6. The tests
have shown that the system holds its property of reliable

Table 5 – Algorithm of a fail-safe system

No Basis Action
1 B Check X
2 FA Copy from M to X
3 B Check M
4 FA Copy from X в M
5 FA Implementation of function f
6 A Check W, C
7 FB Copy from N to W
8 A Check N
9 FB Copy from W to N
10 FB Implementation of function f
11 Pass to clause 1

DEVELOPMENT OF HIGH-RELIABLE SYSTEMS BASED ON THE METHOD OF CROSS CHECK OF AxIOMATIC BASES

76

behavior in the presence of failures (in case of failure, the
signal SAFE_A/SAFE_B corresponding to the basis passes
to 0 state).

The second result is the acquired fail-safety. If SAFE_A
has a constant 0, and SAFE_B is variable (~), then f(FA) is
always performed. Similarly, if SAFE_B=0, and SAFE_A
is (~), f(FB) is performed.

Conclusion

A choice of bases and development of check procedures
have shown in practice that it is advised to enhance the basis
as much as possible, which results in the improved reliability
and fail-safety of the system. In case a large amount of ele-
ments possible to become subject to failures are involved, the
procedures of bases check are getting complicated. Conse-
quently, at the design of a reliable or fail-safe microprocessor
system, an important task is to get a certain already tested
and not very large (i.e. strong) basis. Such basis shall hold
a significant level of operation flexibility, and it can be used
to check the functionality different from the basis.

Thus, the method of cross check of axiomatic bases has
been tested, that let us formally develop and verify reliable
and fail-safe systems, capable of failure detection, and as a
sequence of passing into safe state, or a problem detection
without any loss of performance capability. Test results
show that by means of the method of cross check of axi-
omatic bases we can move to a new level of formalization
and quality in development and verification of fail-safe and
reliable microprocessor systems.

References

1. Bochkov K.А. Microprocessor automation systems on
railway transport: study guide / K. A. Bochkov, А. N. Ko-
vriga, S. N. Kharlap // Gomel, BelSTU. – 2013.

2. Sivko B.V. Axiomatic and basis approach to the de-
velopment of reliable and fail-safe systems / B. V. Sivko //
Automatic equipment on transport: PSTU. – 2015. – No. 4,
v. 1., P. 381–399.

3. Bochkov K.А. Methods and tools of evidence for
functional safety of microelectronic systems of railway
automation equipment / K. A. Bochkov, S. N. Kharlap,
D. N. Shevchenko // – 2011. – No.2. – P. 73–81.

4. Sivko B.V. Diverse axiomatic bases for the development
of reliable and fail-safe systems / B. V. Sivko // BelSTU Report-
er: Science and Transport. – 2014. – No. 1(28). – P. 19–23.

5. Bates M. PIC microcontrollers: an introduction to
microelectronics. / M. Bates // Elsevier. – 2012. – 441 p.

Table 6 – Results of tests of a fail-safe system

Failures Results

Ty
pe

N
um

be
r Safety Correctness of the function

 performed
SA

FE
_A

SA
FE

_B

f(FA) f(FB)

–
SA1(W)
SA0(W)
SA1(X)
SA0(X)
SA(C)
BOR(W)
BAND(W)
BOR(X)
BAND(X)
BOR(C)
BAND(C)
SA1(M)
SA0(M)
SA1(N)
SA0(N)
BOR(M)
BAND(M)
BOR(N)
BAND(N)

1
8
8
8
8
2
7
7
7
7
1
1
8
8
8
8
7
7
7
7

~
0
0
0
0
0
0
0
0
0
0
0
~
~
0
0
~
~
0
0

~
0
0
0
0
0
0
0
0
0
~
~
0
0
~
~
0
0
~
~

+
– + – + – + – +
+ – + – + – + –
– + + + + + + +
– + + + + + + +

+ +
– – – – – – –
– – – – – – –
– + + + + + +
– + + + + + +

+
+

– – – – – – – –
– – – – – – – –

+ + + + + + + +
+ + + + + + + +

– – – – – – –
– – – – – – –
+ + + + + + +
+ + + + + + +

+
 – – – + – + + +
 + + + – + – – –
 + + + + + + + +
+ + + + + + + +

– –
+ + – – – + +
+ + – – – + +
+ + + + + + +
+ + + + + + +

–
–

+ + + + + + + +
+ + + + + + + +
– – – – – – – –
– – – – – – – –
+ + + + + + +
+ + + + + + +
– – – – – – –
– – – – – – –

Note: BOR and BAND – wired OR and AND failures re-
spectively; (+/–) – successful or unsuccessful function
implementation; Position (+/–) from a low bit of the register
to a high one.

