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Резюме. Численное преобразование Лапласа и его обратное преобразование – сложная 
задача в теории массового обслуживания и других вероятностных моделях. Для нахож-
дения стабильных и вычислительно эффективных методов используется подход двойного 
преобразования. Для проверки и улучшения полученного инверсионного решения выпол-
няются прямые преобразования Лапласа от численно инвертированных преобразований с 
последующим сравнением с исходной функцией. Наиболее перспективные методы были 
применены к вычислительным вероятностным моделям, когда не существует аналитиче-
ских решений для обратного преобразования Лапласа. Вычислительная эффективность, 
обеспечиваемая в зависимости от заданного уровня точности, продемонстрирована для 
различных моделей M/G/1 систем массового обслуживания.
Abstract. Numerical Laplace transform and inverse Laplace transform is a challenging task 
in queueing theory and others probability models. A double transformation approach is used 
to find stable, accurate, and computationally efficient methods for performing the numerical 
Laplace and inverse Laplace transform. To validate and improve the inversion solution obtained, 
direct Laplace transforms are taken of the numerically inverted transforms to compare with the 
original function. Algorithms provide increasing accuracy as precision level increases. The most 
promising methods were applied to computational probability models, when there are no closed-
form solutions of the Laplace transform inversion. The computational efficiency compared to 
precision levels is demonstrated for different service models in M/G/1 queuing systems.
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Зиновий Круглый

Введение 
Численное инвертирование преобразования Лапласа 

для получения различных показателей эффективности 
расчетов является важным приемом в теории массово-
го обслуживания и смежных стохастических моделях 
[1], [6], [16]. Методы преобразования Лапласа могут 
упростить задачу решения систем дифференциальных 
уравнений [5] и могут быть рассмотрены с точки зрения 
типичных приложений [4], [8]. Инвертирование преобра-
зования Лапласа широко используется в различных при-
кладных областях, включая анализ производительности 
в теории массового обслуживания и соответствующих 

вероятностных моделях [1], [6],  [16]. Для численного 
инвертирования преобразований Лапласа разработано 
несколько алгоритмов, см., например, обзоры [4] и [13].

Алгоритм Гавера-Стефеста [18] является одним из 
наиболее эффективных методов для решения этой задачи. 
Сходимость данного алгоритма была исследована в работе 
[14]. К сожалению, несмотря на теоретические преимуще-
ства, в ряде практических приложений численная аппрок-
симация часто сталкивается с проблемами точности [1], [9], 
[11], [12], [13], [15]. Небольшие ошибки округления при 
вычислениях в стандартной двойной арифметике могут 
значительно искажать результаты, делая эти алгоритмы 
практически непригодными для применения.
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Числа с двойной точностью, представленные в форма-
те с плавающей запятой, обеспечивают точность вычис-
лений до 15-17 значащих десятичных цифр (в среднем 
16,3) в диапазоне от 10−308 до 10308. При использовании 
расширенной точности можно добавить дополнитель-
ные значащие цифры и получать результаты, более точно 
сходящиеся к решению. Для численной реализации пре-
образования Лапласа и его инверсий мы использовали 
библиотеки численных классов C++ и MATLAB [10], 
[12], а также применили пакет ARPREC [3].

В работе [9] представлен подход двойного преоб-
разования, включающий вычислительно эффективные 
методы для обратного преобразования Лапласа. Рассмо-
трены сложные численные примеры с периодическими 
и осциллирующими функциями. Было установлено, что 
количество членов разложения и выбранный уровень 
точности должны находиться в гармоничном балансе, 
чтобы получить корректные и стабильные результаты. 
В данной работе мы исследуем стабильность и точность 
инверсии преобразования Лапласа с использованием 
алгоритма Гавера-Стефеста [18]. Численные результаты 
были первоначально сопоставлены с известными ана-
литическими решениями. Затем наиболее интересные 
методы были применены к вероятностным моделям, 
для которых необходимо численное обратное преоб-
разование Лапласа. 

Для численного прямого преобразования Лапласа 
было реализовано составное правило Симпсона [9]. Чис-
ленные примеры иллюстрируют вычислительную точ-
ность и стабильность прямого преобразования Лапласа 
и его инверсии благодаря увеличению уровня точности 
(N) и количества членов (L), включенных в разложение.

Остальная часть статьи организована следующим 
образом. Для обозначения преобразуемой функции мы 
используем строчные буквы f(t), и заглавную букву C(s) 
для обозначения ее преобразования Лапласа, например 

. Если аналитическая форма инверсии 
C(s) неизвестна, мы сравниваем исходное C(s) и чис-
ленное решение  после двойного преобразования. 
Результаты иллюстрируются графиками и оценками 
погрешностей.

В разделе 1 дается краткое описание основной теории 
и ее обозначений. В разделе 2 представлено численное 
вычисление прямого преобразования Лапласа с исполь-
зованием составного правила Симпсона. В разделе  3 
представлена методика численного двойного преоб-
разования Лапласа. В разделах 4, 5 и 6 рассмотрены 
проблемные примеры и роль высокоточной арифметики 
при применении к вероятностным моделям. В разделах 
7, 8, и 9 приведены численные преобразования Лапласа 
и их инверсии, в частности, для применения в моделях 
M/D/1 и M/G/1. Мы исследуем устойчивость и точность 
инверсии преобразования Лапласа, а также влияние 
числа членов разложения и уровня точности на числен-
ное приближение. Мы обсуждаем методику двойного 
преобразования для проверки результатов численной 
инверсии. В разделе 10 демонстрируется методика 

двойного преобразования и требования к точности для 
аппроксимации распределения времени ожидания в 
модели M/D/1.

1. Численные преобразования 
Лапласа и их инверсии

Пусть f(t) – функция, определенная для t≥0. Тогда 
интеграл

	
	 (1)

считается преобразованием Лапласа от f(t) при условии, 
что интеграл сходится. Символ  – это оператор преоб-
разования Лапласа, который действует на функцию f(t) 
и порождает новую функцию 

Если C(s) представляет собой преобразование 
Лапласа функции f(t), то есть  то f(t) 
является обратным преобразованием Лапласа для C(s) 
и . Обратное преобразование Лапласа 

 однозначно определено в том смысле, что если 
C(s)=G(s) и f(t) и g(t) непрерывные функции, то f(t)=g(t).

Преобразование Лапласа может быть инвертировано 
алгебраически или численно. Условное обозначение  
используется для численной аррроксимации f(t) (чис-
ленная инверсия преобразования Лапласа C(s)),  ис-
пользуется для численного преобразования Лапласа f(t).

Если t случайная величина с функцией плотности рас-
пределения вероятности f(t) и кумулятивной функцией 
распределения F(t), то это дает

	 	 (2)

2. Численное вычисление прямого 
преобразования Лапласа

Для проверки и улучшения решения инверсии, по-
лученного с помощью алгоритма Гавера-Стефеста, ис-
пользуется численное прямое преобразование Лапласа 
для этой инверсии, которое сравнивается с исходным 
преобразованием Лапласа. Чтобы обеспечить высокую 
точность аппроксимации, численное прямое преобразо-
вание Лапласа реализуется [9] с помощью составного 
правила Симпсона [2]. Для обеспечения высокой точ-
ности мы использовали расчет по составному правилу 
Симпсона с большим количеством подинтервалов.

Преобразование Лапласа функции f(t) определяется 
выражением (1) на интервале [0,∞]. Проблему с бес-
конечным верхним пределом интегрирования можно 
устранить, применив подстановку t=–ln(u), dt=u–1du, 
которая заменяет бесконечные пределы на конечные.

Когда t = 0, u = 1 и когда t→∞, u→0, тогда

.	(3)

Поведение преобразуемой функции должно быть 
рассмотрено в новых пределах, а экспоненциальная 
функция внутри интеграла требует особого изучения с 
точки зрения высокой точности.



5

ТРЕБОВАНИЯ К ТОЧНОСТИ И ДОСТОВЕРНОСТИ В ВЕРОЯТНОСТНЫХ МОДЕЛЯХ

2.1. Вычисление прямого 
преобразования Лапласа с помощью 
составного правила Симпсона

Для интегрирования по интервалу [a,b] выбирается 
четное n таким образом, чтобы функция была достаточ-
но гладкой на каждом подинтервале [xj, xj+1], где xj=a+jh 
для всех j∈{0,1,2,…,n} с h=(b–a)/n. В частности, x0=a и 
xn=b. Тогда составное правило Симпсона имеет вид [2]: 

	 (4)

Применяя это к преобразованному интегралу из 
уравнения (3), получаем uj=jh для всех j∈{0,1,2,…,n} с 
h=1/n. Следовательно, 

.	 (5)

Основная формула правила Симпсона делит интервал 
интегрирования [a,b] на две части. Чтобы применить 
составное правило Симпсона, интервал [a,b] должен 
быть разбит на четное число подинтервалов n=2m. Тогда

.

3. Численный метод двойного 
преобразования Лапласа

Мы определяем следующую технику двойного пре-
образования для инверсии преобразования Лапласа [9]: 

	 	 (6)

Это определение будет использоваться для оценки 
точности инверсии преобразования Лапласа, когда его 
аналитическое решение неизвестно.

После применения преобразования Лапласа задача 
переходит в область Лапласа и представляется как 
функция от s, а не от t.

Хотя вычисления в области Лапласа могут быть 
проще, оставлять решение в этой области, как прави-
ло, нецелесообразно. Для преобразования результата 
обратно во временную область применяются обратные 
преобразования Лапласа.

Когда аналитический ответ неизвестен, трудно оце-
нить точность численного преобразования. Более того, 
трудно оценить, улучшает ли изменение метода или 
ухудшает точность инверсии. Используются следующие 
шаги:

1. Начинаем с доменной функции Лапласа C(s);
2.  Вычисляется численная инверсия с использова-

нием заданного набора параметров. В этом случае мы 

будем контролировать уровень точности и количество 
членов аппроксимации. Установив уровень точности 
N1, мы получим 

	
;	 (7)

3. Используется численное преобразование Лапласа 
для , в результате чего 

	 ;	 (8)

4. Сравниваются функции C(s) и  и определя-
ется функция ошибки: 

	
;	 (9)

5.  Повторяется процесс с другим уровнем точно-
сти N2;

6. Сравниваются  и . Уровень точности, 
обеспечивающий меньшие погрешности, является 
более высоким, а разница между функциями погреш-
ности может дать количественную оценку улучшения 
точности результата при увеличении уровня точности 
и добавлении дополнительных значащих цифр. 

Для проверки и улучшения решения инверсии, по-
лученного с помощью алгоритма Гавера-Стефеста, ис-
пользуется численное прямое преобразование Лапласа, 
которое сравнивается с исходным преобразованием. 
Численное прямое преобразование Лапласа реализу-
ется в работе [9] с использованием составного правила 
Симпсона. [2]. Для обеспечения высокой точности мы 
использовали вычисления с увеличенным количеством 
подинтервалов.

4. Тестирование алгоритмов 
численной инверсии с произвольной 
точностью

В данной демонстрации применяются обратные пре-
образования Лапласа тестовых функций (табл. 1) для 
различных уровней численной точности. Дано C(s), 
требуется найти f(t), чтобы выполнялись следующие 
условия: 

	 .	 (10)

Пример 1. Найти , где 

	 .	 (11)

Соответственно

	 ,	 (12)

где Г(a) – Гамма-функция.
Благодаря расширенной точности вычислений мы 

достигли более высокой точности численного инвер-
тирования функции C01(s)=1/(1+s/b)a. Точная инверсия 
имеет вид . 
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Результаты, представленные на рис. 1, соответству-
ют параметрам b = 1 и a = 20, и иллюстрируют недо-
статочную точность приближения для уровня двойной 
точности (N = 16). Численная инверсия также оценива-
лась с учетом расширенной точности и числа членов 
разложения, (N,L) = (32, 32).

На рис. 2 представлены два скриншота для той же 
функции, что и на рис. 1. Мы наблюдаем значительное 
улучшение результата при увеличении точности до 256 
знаков, с ошибкой порядка 10−73.

Рис. 1. Обратное преобразование Лапласа функции C01(s)=1/
(1+s/b)a оценивается с двойной и повышенной точностью. 

Точное и численное решение с уровнем точности N = 32 ви-
зуально неразличимы

Существует множество примеров, когда не суще-
ствует аналитического решения для обратного преоб-
разования Лапласа. Для таких задач мы сравниваем 
численное решение (s) после применения техники 
двойного преобразования (6) с исходным преобразова-
нием Лапласа C(s).

Сначала мы проиллюстрируем метод двойного пре-
образования на рис. 3 для Гамма распределения с a = 1 
(экспоненциальное распределение) и a = 2,5. Оба пре-
образования Лапласа и инвертирование работают очень 

хорошо. Ошибки E следующие: 2,5×10–5 и 7,45×10–4, 
соответствуют графикам в левой и правой частях.

5. Численное обратное 
преобразование Лапласа неполной 
Гамма функции

Следующий пример значительно отличается от 
предыдущего, поскольку мы не можем выразить об-
ратное преобразование Лапласа аналитически. Нижняя 
неполная Гамма функция P и верхняя неполная Гамма 
функция Q определяются как

	
,	 (13)

	
.	 (14)

Табл.  1. Преобразования Лапласа и обратные преобразования для тестовых функций, используемых 
в  численных расчетах

№ C(s) f(t) Тип функции Алгоритм преобразования

1. Гамма распределение 

2. Аналитическое реше-
ние неизвестно Неполная Гамма-функция 

3.  d(t–a), если a=1 Сдвинутая дельта функция 
Дирака 

4. Гиперэкспоненциальное 
распределение 

5. Аналитическое реше-
ние неизвестно Wq(t) в M/G/1 модели 

Рис. 2. Два скриншота для обратного преобразования 
Лапласа функции C01(s)=1/(1+s/b)a с двойной  

и повышенной точностью
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Мы использовали нормализованное определение не-
полной Гамма функции, где P(a,x)+Q(a,x)=1.

Пример 2 .  Определим  и 
, где

	
.	 (15)

Мы получили аппроксимацию (рис. 4) для инверти-
рования функции (15) с параметром a = 1,0.

Точное решение обратного преобразования Лапласа 
имеет вид –d(t–1), где d(t) дельта функция Дирака (16). 

Улучшения можно достичь при увеличении числа зна-
ков N, начиная с двойной точности (рис. 4, левый график) 
и до точности 32 и 64 знаков (рис. 4, правый график).

Рис. 3. Исходное преобразование Лапласа C01(s)=1/(1+s/b)a; вычисляется его численная аппроксимация 
, оцененная для b = 1,0 при значениях a = 1,0 (левый график) и a = 2,5 (правый график). 

Исходное и численное решение визуально неразличимы

Рис. 4. Обратное преобразование Лапласа функции  с двойной точностью (левый график) и с точностью 

32 и 64 знаков (правый график); важно отметить, что на графиках использованы разные масштабы

Рис. 5. Обратное преобразование Лапласа функции  на уровне точности 512 (левый график) и 1000 (пра-

вый график). Следует отметить, что на двух графиках используются разные масштабы
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Количество членов в аппроксимации соответствует 
уровню точности, L=N. Для более точной оценки ис-
пользуются уровни точности 500 и 1000, как показано 
на рис. 5.

Оригинал C02(s) сравнивается с численным решением 
 полученным после двойного 

преобразования. Таким образом,  вычисляется как 
численная инверсия C02(s). Затем преобразование Лапла-
са  от  сравнивается с исходной функцией 
C02(s). Исходное преобразование Лапласа C02(s) (Exact) 
и численная аппроксимация (Numerical) этого двойного 
преобразования показаны на рис. 6. Использованы сле-
дующие параметры: a = 0,5; 1; 3 и 5.

Рис. 6. Неполная Гамма функция ;  

вычисляется ее численная аппроксимация 

 для значений a = 0,5; 1; 3 и 5.

6. Аппроксимация дельта функции 
Дирака

Дельта функцию Дирака [5] можно условно пред-
ставить как функцию на вещественной прямой, которая 
равна нулю везде, кроме начала координат, где она бес-
конечна, 

	
	 (16)

и которая также ограничена, чтобы удовлетворять 
тождеству 

	 .	 (17)

Это всего лишь эвристическая характеристика. 
Дельта Дирака не является функцией в традиционном 
смысле, поскольку ни одна функция, определенная на 
вещественных числах, не обладает такими свойствами. 
Эта функция может быть строго определена либо как 
распределение, либо как мера.

Отметим, что дельта функция Дирака может быть 
определена как предел (в смысле распределений) по-
следовательности нуль-центрированных нормальных 
распределений

	
	 (18)

Преобразование Лапласа дельта функции определя-
ется как [5]

	 ,	 (19)

что согласуется с определением преобразования Лапласа 
для d(t–a) как e–as.

П р и м е р  3 .  Н а й т и   и 
, где 

	 .	 (20)

Выражение обратного преобразования Лапласа в тер-
минах стандартных математических функций неизвест-
но. Мы можем работать с обратным преобразованием 
Лапласа и методом двойного преобразования, включая 
дельта функцию Дирака и ее сдвинутую форму.

Итак, если a=1, то f(t)=d(t–a), где d(t) дельта функция 
Дирака.

Пакет Математика дает численное значение обратного 
преобразования Лапласа для a=0,5 и a=0,5:

.	(21)

Рис. 7. Аппроксимация дельта функции Дирака с параметром a = 1, вычисленная с двойной точностью. 
Уровень точности N знаков и количество членов разложения L (16, 16) для левого графика и (16, 64) для правого графика.
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Численное инвертирование преобразования Лапласа 
C03(s)=e–as, как известно, эквивалентно аппроксимации 
дельта функции Дирака. На рис.  7 показана аппрок-
симация дельта функции Дирака с параметром a = 1, 
вычисленная с двойной точностью. 

На левом графике используется одинаковое количе-
ство членов разложения и уровня точности, L=N. Эта 
аппроксимация принимает отрицательные значения, 
в то время как дельта-функция строго положительна. 

На правом графике N = 16 и L = 64. При рассмотрении 
численной инверсии важно обратить внимание на точ-
ность в зависимости от количества членов разложения 
и уровня точности. Мы сравниваем инверсии с помо-
щью реализации Гавера-Стефеста и наблюдаем, как 
повышается точность инверсий при увеличении числа 
членов разложения и уровня точности (знаков). Однако 
существует ограничение на добавление дополнительных 
членов [12]. При увеличении числа членов разложения 

Рис. 8. Аппроксимация дельта функции Дирака, a = 1; уровень точности N и количество членов L равны, 
L=N: 32, 64, 128, 256, 512 и 1000; обратите внимание на различия в масштабах на четырех графиках

Рис. 9. Исходное преобразование Лапласа C03(s)=exp(–asa); вычисляется его обратное преобразование 
(левый график) и численная аппроксимация  (правый график)
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до L = 64 мы обнаруживаем, что численная инверсия 
становится неустойчивой и в нашей функции преоб-
ладает численная ошибка (правый график).

Использование расширенной точности (рис.  8) по-
зволяет преодолеть численные ограничения, которые 
возникают при работе с двойной точностью. Таким 
образом, мы можем использовать большее количество 
термов. В этих примерах используется одинаковое ко-
личество членов разложения и уровня точности, L=N. 
Для повышения точности аппроксимации мы увеличили 
число знаков N до 32, 64, 128, 512 и 1000.

На рис. 9 показаны обратное преобразование Лапласа 
(левый график) и численное двойное преобразование Ла-
пласа (правый график) для C03(s)=exp(–asa), оцененные 
для a = 0,5 и a = 0,5. Аналитическое решение обратного 
преобразования Лапласа, соответствующее (21), пред-
ставлено на графике как точное. Аппроксимация дана с 
двойной точностью, а погрешности равны E=6,6×10–4 и 
1,3×10–2, соответственно для левого и правого графиков.

На рис. 10 представлен скриншот инверсии преобразова-
ния Лапласа для C03(s)=exp(–asa), оцененной для тех же a и 
a с уровнем точности 64. Отметим, что точность аппрокси-
мации улучшилась, и погрешность составила порядка 10–18.

Рис. 10. Скриншот для обратного преобразования Лапласа 
функции C03=exp(–asa), оцененного для a = 0,5 и a = 0,5, с 

уровнем точности 64 знака

В табл. 2 показана погрешность   

для численного приближения , 
оцененная для a = 0,5 и a = 0,5, при различных уровнях 
точности 16 и 64.

Табл.  2. Численная погрешность 

 для численного приближения 

, оцененная для a  =  0,5 
и a  =  0,5, при различных уровнях точности: 

16  и  64 знаков.

s Численное
решение

Ошибка,
L = 16

Ошибка,
L = 64

0,5 0,7022 9,23×10-6 2,76×10-6

1 0,6065 4,03×10-7 9,13×10-10

2 0,4931 6,81×10-7 3,51×10-17

3 0,4206 4,38×10-7 3,69×10-23

4 0,3679 7,82×10-8 1,97×10-24

5 0,3269 2,25×10-7 3,94×10-25

7. Распределение времени 
ожидания в M/G/1

Модель M/G/1 предполагает пуассоновское поступле-
ние с интенсивностью l и прозвольным распределением 
времени обслуживания S = 1/μ, где μ – интенсивность 
обслуживания. Интенсивность трафика ρ = λ/μ = λS < 1. 

Важно выполнение условия ρ  <  1, иначе система 
становится нестабильной. 

Коэффициент вариации времени обслуживания 
cs=s/b, где b=E[S] – среднее время и s – стандартное 
отклонение.

Если cS=1, мы имеем модель M/M/1 с преобразовани-
ем Лапласа-Стилтьеса времени обслуживания

.

Рассмотрим функцию плотности вероятности ФПВ 
(probability density function, PDF) и кумулятивную 
функцию распределения КФР (cumulative distribution 
function, CDF).

Для модели M/M/1, ФПВ и КФР времени ожидания 
определяются соответственно [17]:

	  ФПВ, M/M/1,	 (22)

	 , КФР, M/M/1.	 (23)

Если коэффициент cS>1, то время ожидания можно 
эффективно аппроксимировать гиперэкспоненциальным 
распределением, используя для него определение по 
параллельным стадиям.

Пусть время обслуживания S соответствует гиперэк-
споненциальному распределению H2, ФПВ которого 
определяется выражением (33), а КФР задается фор-
мулой (34).

Преобразование Лапласа для ФПВ представлено в 
уравнении (32), что позволяет получить преобразование 
Лапласа для КФР как 

	 .	 (24)

Первая и вторая производные от C(s) вычисляются 
следующим образом:

	
,	 (25)

	
.	 (26)

Математическое ожидание  и дис-
персия Var[S]=E[S2]–(E[S])2 случайной переменной S 
следующие: 

	
,	 (27)
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	 (28)

	
.	 (29)

Чтобы удовлетворить условие (27), пусть 

	 .	 (30)

Подставляя (27), (29) и (30) в 

, получим параметры гиперэкспо-

ненциального распределения [6]: 

.	(31)

8. Решение задач производитель­
ности в модели M/G/1.

Пример 4. Рассматриваются два варианта модели 
M/G/1.

Вариант 1. Приведено преобразование Лапласа для 
ФПВ распределения времени обслуживания.

Найти  и ,  
где

	 ,	(32)

	
.	 (33)

Вариант 2. Идентичен варианту 1, но теперь для КФР.

Найти  и , где

	
,	 (34)

	
.	 (35)

Таким образом, было рассмотрено несколько вари-
антов для модели M/G/1. Первый – преобразование 
Лапласа для ФПВ распределения времени обслужи-
вания и второй, идентичный, для КФР. Модель M/G/1 
описывается с помощью l=0,8, матожидание E[S]=1,0, 
коэффициент вариации cs = 1,5; 2,5 и 4,5.

На рис. 11 показано обратное преобразование Лапласа 
C04(s), оцененное для ФПВ (левый график), и обратное 
преобразование Лапласа (C04(s))/s оцененное для КФР 
(правый график). Погрешности составляют E=3,52×10–5 
и E=1,2×10–5 соответственно.

9. Распределение времени 
ожидания в модели M/D/1

Пусть время обслуживания имеет плотность распре-
деления Ek со средним 1/m и ФПВ 

	
.	 (36)

Преобразование Лапласа-Стилтьеса

	 .	 (37)

Плотность распределения Ek можно трактовать как 
распределение Эрланга с параметром k. Модель M/D/1 
можно рассматривать как частный случай M/Ek/1 так как 
когда k→∞ и m→∞ таким образом, что km–1→b (0<b<∞), 
время обслуживания Ek детерминировано с констан-
той b. Интенсивность трафика lb<1. Теперь B*→e–bs как 

Рис. 11. Обратное преобразование Лапласа функции C04(s), оцененной для ФПВ (левый график), и (C04(s))/s, оцененной 
для КФР (правый график); модель M/G/1 имеет l=0,8, матожидание E[S]=1,0, коэффициенты вариации cs = 1,5; 2,5 и 4,5.
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k→∞. ФПР времени ожидания имеет преобразование 
Лапласа [17]: 

	
.	 (38)

Пример 5. Численно оценить распределение времени 
ожидания Wq(t) для различных моделей обслуживания 
в модели M/G/1.

Преобразование Лапласа для Wq(t) задается уравне-
нием преобразования Поллачека-Хинчина (P-Х) [17] 

	 , где	 (39)

	 .	 (40)

B*(s) – это преобразование Лапласа-Стилтьеса функ-
ции F(t), где F(t) является КФР времени обслуживания, 
l и b – средние значения интенсивности прибытия и 
времени обслуживания соответсвенно, r=lb – интен-
сивность трафика.

Как и в случае с M/G/1, рассматриваются следующие 
модели обслуживания:

	
,	 (41)

	
,	 (42)

	 ,	 (43)

	
.	 (44)

Для модели M/H2/1 интенсивность поступления l=5,0. 
Распределение времени обслуживания H2 оценивается 
для m=6, b=1/m и cs=1,5. Для этой модели интенсив-
ность трафика r=l/m, а КФР в момент времени 0 имеет 
вид F(0)=1–r. Алгоритм Гавера-Стефеста использован 
для инвертирования преобразования Лапласа для B*(s), 
которое определяется с помощью (39). Для моделей 

Рис. 12. ФПВ и КФР времени ожидания для M/M/1, M/D/1 и M/H2/1

Рис. 13. M/D/1: ошибки Log Wq(t) (левый график) и оценка для Wq(t) по инверсии Гавера-Стефеста (правый график)
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M/D/1, M/H2/1 и M/M/1, ФПВ и КФР времени ожидания 
показаны на рис. 12.

Для модели M/D/1 время обслуживания детермини-
ровано и равно значению b. Для детерминированного 
обслуживания B*(s) определяется формулой (43). Мы 
сравниваем Wq(t), вычисленное путем инвертирования 
в (39), с Wq(t), аналитически полученным в [17]: 

	
,	 (45)

где [x] – наибольшее целое число, меньшее или равное x.
На рис. 13 показаны результаты для модели M/D/1 

при l = 5,0, m = 6,0 (b=1/m и r=l/m = 0,8). На рисунке по-
казаны ошибки, по аналитической оценке, в логарифми-
ческом масштабе LogWq(t) (левый график). Оценка для 
Wq(t)(правый график) получена с помощью алгоритма 
Гавера-Стефеста.

Нам не удалось получить численное решение для 
следующих уровней точности: N = 16, если t>10; N = 64, 
если t>26; N  =  256, если t>90. Только для N  =  512 и 
N = 1000 мы получаем правильный результат на всем 
диапазоне 0<t≤100. 

Инверсии Wq(t) представлены на правом графике. 
Даже при использовании двойной точности мы получаем 
правильное решение и не можем визуально различить 
кривые с разной точностью для N = 16; 64; 256 и 512.

На рис. 14 для модели M/D/1 показаны численные 
результаты распределения времени ожидания Wq(t) с 
двойной точностью (N = 16) по аналитическому реше-
нию (45) и по инверсии Гавера-Стефеста. В аналитиче-
ском решении доминируют шумы после t>9.

Рис. 14. Wq(t) для модели M/D/1 КФР времени ожидания 
получена аналитически, а также с использованием инверсии 

Гавера-Стефеста. В аналитическом решении доминируют 
шумы после t>9.

Наиболее распространенным распределением времени 
обслуживания является экспоненциальное, и в этом слу-
чае распределение времени ожидания можно получить в 
аналитической форме. Для более общих случаев анали-
тические решения уравнения преобразования (P-Х) для 
модели M/G/1 являются математически неразрешимыми. 

Следующий конкретный пример используется для 
сравнения аналитического решения и инверсии Гавера-

Стефеста. Рассмотрим систему M/H2/1 с распределением 
времени обслуживания [7]

	 ,	 (46)

где l – интенсивность поступления, b=5/(8l) и r=lb=5/8. 
Для численных решений мы использовали l=5.

Соответствующее преобразование Лапласа 

	
.	 (47)

Используя B*(s) и уравнение преобразования (P-Х) 
(10.4), получим Wq(s) и Wq(t) для плотности времени 
ожидания [7]: 

	
,	 (48)

	
,	 (49)

где u0(t) – единичная импульсная функция.
Аналитическое решение для КФР времени ожидания 

может быть легко найдено как: 

,	 (50)

.	 (51)

На рис. 15 показаны численные результаты распреде-
ления времени ожидания для M/H2/1 по аналитическому 
решению и инверсии Гавера-Стефеста для ФПВ (левый 
график) и КФР (правый график). Отличить визуально 
аналитические результаты от результатов инверсии 
Гавера-Стефеста практически невозможно.

10. Требования к точности 
и достоверности анализа M/D/1 
с большим временем ожидания

Результаты аппроксимации двойного преобразования 
для распределения времени ожидания Wq(s) в M/D/1 
показаны на рис. 16 и 17. Для преобразования Лапласа 
при инверсии используется техника двойного преоб-
разования

	 .	 (52)

Точное решение Wq(s) сравнивается с  после 
применения метода двойного преобразования. Инверсия 
преобразования Лапласа реализована алгоритмом Гаве-
ра-Стефеста, а для численного прямого преобразования 
Лапласа используется составное правило Симпсона.

Аппроксимация для распределения времени ожида-
ния в M/G/1 удобна при малой интенсивности потока 
и небольших значениях t, обеспечивая подходящую 
аппроксимацию с двойной точностью. 
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Фигуры соответствуют широкому диапазону малых 
параметров преобразования Лапласа s, соответствую-
щих большому значению t.

На рис.  16 приведены кривые для уровня двойной 
точности (N = 16) с различным количеством подинтер-
валов n = 500, 5000, 50000 и 150000 при вычислении 
преобразования Лапласа. Похоже, что для s отсутствует 
эффект от увеличения n на интервале [0,1; 10] (левый 
график), но кривые отличаются для s на меньшем ин-
тервале [0,1; 0,5] (правый график).

На рис. 17 показано влияние уровня точности N. 
Количество подинтервалов n  =  500. При двойной 
точности метод работает плохо, а значительное 
улучшение наблюдается при увеличении уровня 
точности до 256.

Рис. 17. Аппроксимация двойного преобразования для рас-
пределения времени ожидания Wq(s) для M/D/1 с расширен-
ной точностью вычислений, число подынтервалов n = 500

Рис. 15. Распределение времени ожидания для M/H2/1 по аналитическому решению и инверсии Гавера-Стефеста 
для ФПВ (левый график) и КФР (правый график)

Рис. 16. Аппроксимация двойного преобразования для распределения времени ожидания Wq(s) в M/D/1: 
двойная точность (N = 16) с различным количеством подинтервалов n = 500, 5000, 50000, 150000 

и диапазонах [0,1; 10] (левый график) и [0,1; 5] (правый график)
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ТРЕБОВАНИЯ К ТОЧНОСТИ И ДОСТОВЕРНОСТИ В ВЕРОЯТНОСТНЫХ МОДЕЛЯХ

Выводы

Вычисления с произвольной точностью, также из-
вестные как расширенная точность или арифметика 
высокой точности, необходимы в различных областях, 
где стандартные вычисления с двойной точностью с 
плавающей запятой, которые обычно обеспечивают 
точность до 15-17 десятичных знаков, оказываются 
недостаточными.

Точность и стабильность численного преобразования 
Лапласа и его инверсии играют ключевую роль в ряде 
приложений вычислительных вероятностных моделей. 
В данной работе мы предложили и оценили различные 
численные методы реализации преобразования Лапласа 
и его инверсии в арифметических системах с повышен-
ной точностью.

Рассматриваются два возможных способа выполне-
ния преобразования. Если примеры включают функции 
с известными инверсиями, эффективность моделей с 
расширенной точностью может быть подтверждена 
сравнением с аналитическим решением. Наиболее 
реалистичные и сложные задачи включают функции с 
аналитически неизвестными инверсиями. 

Таким образом, для поиска вычислительно эффек-
тивных методов численного преобразования Лапласа 
и его инверсии был предложен подход двойного пре-
образования. В этом подходе выполняются прямые 
преобразования Лапласа численно инвертированных 
преобразований для сравнения с исходной функ-
цией. Численное прямое преобразование Лапласа 
реализуется с использованием составного правила 
Симпсона.

Точность может быть проверена сравнением с исход-
ной формой преобразования Лапласа. Мы наблюдаем 
улучшение точности инверсий с увеличением числа 
членов разложения и уровня заданной точности, что 
приводит к более устойчивым решениям. 

Вычислительная эффективность, в зависимости от 
уровня заданной точности, продемонстрирована на 
примере распределения времени ожидания в моделях 
M/G/1.
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