
95

Functional reliability. The theory and practice

Shubinsky I.B.

METHODS OF SOFTWARE FUNCTIONAL 
DEPENDABILITY ASSURANCE

The paper considers the basic aspects of the construction of reliable software. It discusses methods and 
ways of error prevention based on protective and multiversion programming, tools of passive and active 
detection of errors, principles and methods of error correction based on dynamic redundancy and restart. 
Some emphasis is made on solving the tasks of construction of error-tolerant programs with the help of 
digression methods, techniques of error isolation and construction of redundant algorithms not critical to 
various types of information process violations.

Keywords: a program, an error, software dependability, error prevention, error detection, error correction, 
error-tolerant software, antibugging, multiversion programming, restart, dynamic redundancy, algorithmic 
redundancy, isolation of errors.

1. Introduction

The functional dependability of information systems substantially depends on software dependability 
[1]. All principles and methods of software functional dependability assurance in accordance with their 
purpose can be divided into four groups: error prevention, error detection, error correction and error 
tolerance assurance (fig. 1). Principles and methods allowing to minimize or completely exclude errors 
belong to the first group. Methods of the second group concentrate on the functions of software itself 
that help to reveal errors. The third group includes the functions of software intended for correction of 
errors or their consequences. Error tolerance (the fourth group) is a degree of software system ability to 
continue functioning in case of errors.

2. Error prevention

This group includes principles and methods, whose purpose is to prevent from occurrence of er-
rors in the ready-made software. It should be obvious that the error prevention is an optimal way to 
achieve software dependability. The best way to provide dependability is in the first place to prevent 
from occurrence of errors. To that end, developers widely apply methods of the so-called antibugging 
(safe programming) designed to reduce the probability of errors in programs, and also multiversion 
programming. 



METHODS OF SOFTWARE FUNCTIONAL DEPENDABILITY ASSURANCE

96

Antibugging is understood as a restriction of misuse of program objects. In other words, the require-
ment is put forward to designing and programming in such a way that would insure the expected use 
of the program in strict conformity with specifications, as well as to make its misuse impossible. For 
example, when designing a system in which many modules interact, we can demand that some interac-
tions between them should be allowed only in certain situations. Thus, module A can request module B 
always, in certain situations or never in spite of the fact that modules A and B are in such relations that 
the request is possible.

Antibugging is a technology of potential errors’ prevention by checking a set of allowable conditions 
in each module. During programming many techniques can be used to check up anomalies in control or 
in data. Some of antibugging methods are listed below:

- boundary values of variables are analyzed; 
- the sizes, type and range of parameters of data input procedure are checked; 
- parameters “access only to read” and “read-write” should be divided, and access to them should be 

checked up; 
- symbolic constants should not be accessible for writing; 
- input variables and intermediate (auxiliary) variables with physical value should be checked up for 

authenticity; 
- influence of output variables should be checked up, preferably by direct observation of changes of a 

system state connected to them, etc. 
The elementary method of antibugging consists in use of special traps for errors intended for errors 

such as misuse of modules. The developer of the program does not concern about what the user will do 
after receiving the message on misuse of the module, but he is obliged to design the module so that user 
errors will not cause irreversible changes in the module. Thus, the user caught on misuse of the module 
makes adjusting actions and again activates the module, not leaving any traces of erroneous calls. In other 
words, it implies such programming when it is not so easy or impossible to use the software product 
outside the scope of its specification.

Multiversion programming (N-version programming). The purpose of this method is to find out and 
mask residual errors of software design during execution of programs, to prevent critically hazardous 

Fig. 1. The basic aspects of construction of the architecture of reliable software 



97

METHODS OF SOFTWARE FUNCTIONAL DEPENDABILITY ASSURANCE

system failures, and to continue operation with high dependability. In N-version programming the given 
specification of the program is realized differently for N time. The same values of input data are given 
to N-versions, and then the results made by N-versions are compared. If the result is considered cred-
ible, it is transferred to computer as output data. N-versions can be carried out in parallel on separate 
computers or all versions can alternatively be executed on one computer. Output results are exposed 
to internal voting. Various strategies of voting can be used on N-versions depending on requirements 
of application. For critical information systems, the full consent of all N-versions is necessary. For 
other information systems, the strategy of voting by a simple majority can be used. For cases where 
there is no collective consent, probabilistic approaches can be used to maximize the chance of choos-
ing a correct value, for example, by taking an average value, temporarily freezing output data before 
the consent returns, etc. 

For dual programming (if two versions of the program are developed), in case of detection of divergence 
in results, it is necessary to define by additional criteria what result is correct and to reject any other result. 
For N-version programming, the correct result is defined according to a majority criterion, i.e. we select 
the result which is observed in the majority of program versions.

The considered ways of redundancy demand twice or N as much time for calculations and increase in 
labor volume of programmers by as much time. In this reference, of interest is modified dual programming 
where a sufficiently exact, but complex basic program is accompanied by a less exact, but simple backup 
program. If for identical initial data the results of programs’ execution differ by the value which is higher 
than the allowable error, the assumption is taken that the basic program has failed as a less dependable 
one, and the result of backup program execution is accepted as the correct result.

However, it is never possible to guarantee the absence of errors. Other three groups of methods rely 
on the assumption that errors will nevertheless take place.

3. Error detection 

If we assume that any mistakes will nevertheless take place in software, the best strategy (after error 
prevention) is to include tools for error detection in software itself.

The majority of methods are designed whenever possible for immediate detection of failures. The 
immediate detection has two advantages: it is possible to minimize error influence and the subsequent 
difficulties for the person who should extract information about it, to find and to correct it.

Measures related to error detection can be divided in two subgroups: passive attempts to find out er-
ror symptoms in the process of “usual” execution of software and active attempts of program system to 
periodically survey its own condition in search for an error flag.

Passive detection
Measures related to error detection can be accepted at several structural levels of a program system. 

Here we shall consider a level of subsystems, or components, i.e. we shall be interested in measures on 
error symptoms’ detection undertaken at transition from one symptom to another, and also symptoms 
inside a component. Certainly, all this applies also to individual modules inside a component.

Developing these measures, we shall rely on the following.
1. Mutual suspicion. Each of the components should assume that all others contain errors. When it 

obtains any data from another component or from a source outside of the system, it should assume that 
the data can be wrong, and try to find errors in them.

2. Immediate detection. It is necessary to detect errors as soon as possible. It limits damage inflicted 
by them as well as considerably simplifies the problem of debugging.

3. Redundancy. All means of error detection are based on some form of redundancy (explicit or 
implicit).



METHODS OF SOFTWARE FUNCTIONAL DEPENDABILITY ASSURANCE

98

When measures on error detection are developed, it is necessary to accept the coordinated strategy 
for the whole system. The actions undertaken after error detection in software should be uniform for all 
system components. It brings an attention to the question as to what actions should be taken, when an 
error is not detected. The best decision is immediately to end the program execution or (in case of an 
operating system) to put a central processor in wait state. From the point of view of granting the most 
favorable conditions in error diagnostics for a person debugging the program, for example, a system 
programmer, the immediate end offers the best strategy. Certainly, in many systems a similar strategy 
appears unreasonable (for example, it can appear that it is impossible to suspend system operation). In 
this case a method of error registration is used. The description of error symptoms and “snapshot” of 
system state is saved in an external file, and then the system can continue operation. This file will be 
investigated by maintenance staff later.

Always, when it is possible, it is better to suspend program execution than to register errors (or to 
provide system operation in any of these modes as an additional opportunity). The difference between 
these methods will be illustrated by ways of revealing causes for a grinding sound sometimes arising in 
your car. If the car mechanic is on a back seat, he can survey a car’s state at that moment when a grind-
ing sound arises. If you choose a method of error registration, the problem of diagnostics becomes more 
complex.

Active detection of errors
Not all errors can be revealed by passive detection methods as these methods detect an error only when 

its symptoms are exposed to appropriate checkup. It is possible to make even additional checkup if to 
design special software for active search for error attributes in a system. Such means refer to as tools for 
active detection of errors.

Tools for active detection of errors are usually combined in the diagnostic monitor: parallel proc-
ess, which periodically analyzes a system’s state with the purpose to detect an error. The large-scale 
program systems managing resources frequently contain errors that lead to resource loss for long 
time. For example, running of an operating system’s memory hands over blocks of memory “in rent” 
to programs of users and other parts of the operating system. An error in these very “other parts” of 
the system can sometimes lead to erroneous operation of the memory control block as the memory 
engaged in return of memory handed over earlier in rent, which causes slow degeneration of the 
system.

The diagnostic monitor can be realized as a periodically executed task (for example, it is planned 
for each hour) or as a task with a low priority, which is planned for execution when the system 
switches over to wait state. As before, concrete checks carried out by the monitor depend on system 
specificity, but some ideas will be understandable from examples. The monitor can examine the 
basic memory to detect memory blocks, not dedicated to any of tasks carried out and not included 
in a system’s list of free memory. It can check also unusual situations: for example, a process was 
not planned for performance during some reasonable interval of time. The monitor can carry out 
search for “mislaid” messages inside the system or operations of input-output which remain uncom-
pleted for unusually long time. The monitor can also search for sites of memory on a disk which are 
not marked as allocated and are not included in the list of free memory, and also a various sort of 
strangeness in data files.

Sometimes it is desirable that under emergency the monitor should execute trouble-shooting testing of 
a system. It can activate certain system functions, comparing their results with beforehand determined 
ones and checking them as far as the execution time is reasonable. The monitor can also periodically 
submit “empty” or “easy” tasks to the system to make sure that the system functions at least in some 
primitive mode.



99

METHODS OF SOFTWARE FUNCTIONAL DEPENDABILITY ASSURANCE

4. Error correction

The following step consists in methods of error correction; when the error is detected, either it or its 
consequences should be corrected by the software. Error correction by the system is a fruitful method of 
dependable hardware. Some devices are capable to detect faulty components and switch over to use iden-
tical backup components. Similar methods are inapplicable to software due to deep internal distinctions 
between equipment failures and errors in programs. If some program module contains an error, identical 
“backup” modules will also contain the same error.

Another approach to error correction is connected to attempts to recover the destructions caused by 
errors, for example, distortions of records in databases or control tables of a system. The advantages of 
methods used for struggle against distortions are limited, as it is supposed that the developer beforehand 
will foresee some possible types of distortions and will provide software functions for their elimination. 
It is similar to paradox as, if to foreknow, what errors will arise, it would be possible to take additional 
measures for their prevention. If methods of failure consequence elimination cannot be generalized to work 
with many types of distortions, it will be the best way to direct efforts and means for error prevention. 
Instead of equipping an operating system under development with its tools of detection and restoration of 
a chain of distorted tables or control blocks, when developing an operating system, it is better to design 
a system in such a way that only one module will have access to this chain, and then persistently try to 
receive evidence of this module correctness.

5. Error tolerance 

The basic assumption of software error-tolerant programming consists in the fact that it does not matter 
how good the program has been designed and realized, it will still contain some residual errors. And if that’s 
the case, then modules of the program which can fail, should have “a buffer stock”. With this purpose the 
module is designed in the form of recovery blocks. Each recovery block contains a pass-through test and 
one or several alternatives of realization. The basic alternative is initiated by activation of the recovery 
block and when its execution comes to the end, the checkup of a pass-through test value is carried out. If 
it makes “true”, it is considered that the execution of a recovery block is successfully completed. If the 
test makes “false”, then another alternative is initiated and after that the definition of a pass-through test 
value is carried out again, etc. and so on till the successful execution of a recovery block. If any alternative 
has not passed the pass-through test, the recovery block is considered as erroneous and the execution of 
another alternative of the activated module begins. Other technique is applied as well: various segments 
of the program are written, frequently independently, each of which is intended for execution of one 
function. The program is made up of these segments. The first segment named primary is executed first. 
It is followed by a pass-through test of the calculation result of the first segment. If the test has passed 
successfully, then the result is accepted and transferred to the subsequent parts of the system. If the test 
has been unsuccessful, any side effects of the first segment are reset, and the second segment named as 
the first alternative is executed. It is also followed by a pass-through test whose results are considered as 
in the first case. If it is necessary, other alternative techniques can be realized.

The introduced method of parrying software residual errors by designing the module in the form of 
a recovery block sometimes requires the unjustified efforts connected to designing of several recovery 
blocks, each of which contains the pass-through test and one or several alternatives of realization. For the 
purpose of practical support of program system functioning at presence of errors, the group of methods 
which is divided into four subgroups has been developed: dynamic redundancy, back-off methods, methods 



METHODS OF SOFTWARE FUNCTIONAL DEPENDABILITY ASSURANCE

100

of error isolation and construction of algorithms immune (or not critical) to various sorts of information 
process violations (use of algorithmic redundancy).

1. The dynamic redundancy concept roots in designing of hardware. One of the approaches to dynamic 
redundancy is the majority backup (a method of voting). The data are processed independently by several 
identical devices, and obtained results are compared. If the majority of devices have produced an identical 
result, then this result is considered as correct. And again, as a result of special nature of errors in software, 
the error presented in a copy of the program module will be present also in all its other copies; therefore, 
in this case the idea of voting probably is unacceptable. The approach sometimes offered for the solution 
of this problem consists in having some not identical copies of the module. It means that all copies execute 
the same function, but either they realize various algorithms or are developed by different authors. This 
approach is unpromising for the following reasons. It is frequently difficult to receive essentially differ-
ent versions of the module which executes identical functions. Besides, there is a necessity in additional 
software for the execution of these module versions in parallel or serially and comparisons of obtained 
results. This additional software improves the level of system complexity that certainly contradicts to the 
basic idea of error prevention – first of all to aspire to minimize software complexity.

The second approach to dynamic redundancy consists in execution of these backup copies only when 
the results received with the help of the basic copy are recognized wrong. If it occurs, the system auto-
matically activates a backup copy. If its results are also wrong, another backup copy is activated etc.

2. The second subgroup of error tolerance assurance methods refers to as back-off methods or methods 
of reduced service. These methods are acceptable usually only when the most important thing for soft-
ware system is to end an operation correctly. For example, if an error turns out in the system controlling 
technological processes and as a result this system fails, then a special fragment of the program designed 
to secure the system and to provide accident-free end of all processes controlled by the system can be 
loaded and executed. Similar tools are frequently necessary in operating systems. If an operating system 
detects that it is just about to fail, it can load the emergency fragment responsible for notification of users 
at terminals about a forthcoming failure and for saving of all system critical data.

3. The third subgroup consists of error isolation methods. Their basic idea is to prevent error conse-
quences from going outside the boundaries of the smallest possible system software part, so that if an error 
arises then not the whole system will fail; some system functions or some of its users are shut down. For 
example, in many operational systems errors of some individual users are isolated, so failure influences 
only some subset of users, and the system as a whole continues to function. In telephone switching systems 
for recovery after an error in order not to risk the whole system failure, telephone connection is simply 
cut. Other methods of error isolation are related to protection of each of system programs from errors 
of other programs. An error in the applied program which is executed under operating system control, 
should affect only this program. It should not affect an operating system or other programs functioning 
in this system.

Isolation of programs in an information system is the key factor ensuring that errors in a single user 
program will not lead to errors in programs of other users or to a complete system failure. Key rules of 
error isolation in programs consist in the following: 

1. The applied program should not have any opportunity to refer directly to another applied program 
or data in other programs and to change them.

2. The applied program should not have any opportunity to refer directly to programs or a operating 
system and to change them. Communication between two programs (or the program and the operating 
system) can be allowed only under the condition of usage of precisely defined interfaces and only in case 
when both programs agree to this communication.

3. Applied programs and their data should be protected from the operating system to a point that errors 
in the operating system could not lead to casual change of applied programs or their data.



101

METHODS OF SOFTWARE FUNCTIONAL DEPENDABILITY ASSURANCE

4. The operating system should protect all applied programs and data from their casual change by 
system operators or maintenance staff.

5. Applied programs should not have any opportunity either to stop a system, or to compel it to change 
another applied program or its data.

6. When the applied program addresses the operating system, the acceptability of all parameters should 
be checked, the applied program should not have any opportunity to change these parameters between 
the moments of check and their real use by the operating system.

7. None of system data directly accessible to applied programs should influence the functioning of an 
operating system. An error in the applied program owing to which the contents of this memory can ac-
cidentally be changed, leads eventually to system failure.

8. Applied programs should not have any opportunity to bypass an operating system to directly use 
hardware resources controlled by it. Applied programs should not call directly the components of an 
operating system intended for use only by its subsystems.

9. Components of an operating system should be isolated from each other so that an error in one of 
them should not lead to changes of other components or their data. 

10. If an operating system detects an error in itself, it should try to limit influence of this error by one 
applied program and as a last resort to stop execution of only this program.

11. An operating system should give applied programs an opportunity to correct errors detected in them 
on demand, instead of unconditionally stopping the execution of applied programs.

Realization of many of these principles influences the architecture of system underlying hardware. 
Though we use the term “operating system” when defining many of them, they are applicable to any 
program (whether it is an operating system, teleprocessing monitor or file management subsystem) which 
is engaged with service of other programs.

4. The fourth subgroup is introduction of algorithmic redundancy.

6. The conclusion

The paper considers effective methods and ways for construction of the architecture of functionally 
dependable software. The European experience in development of programs for safety related systems [2] 
is used, and recommendations of standard [3] are also applied. Ensuring software dependability is not 
limited by development stages of their specification and qualitative architecture. To solve the key task of 
reliable information system construction, it is necessary to design the dependable software, to implement, 
to integrate it with hardware, to provide dependability of software during certification, operation and 
maintenance. These stages of construction of dependable program are the subject of further discussion.

References

1. Shubinsky I.B. Functional dependability of information systems (Methods of analysis). M.: Depend-
ability Journal Ltd., 2012, 296p.

2. BS EN 50128:2011. The software for control and protection systems on railways.
3. GOST R/IEC 61508-3-2012. Functional safety of electrical/electronic/programmable electronic 

safety-related systems. Requirements for software. 


