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GENETIC ALGORITHM FOR OPTIMIZATION  
OF ONBOARD SOFTWARE ARCHITECTURE

The paper describes the model of onboard software architecture that allows us to assess the dependability 
of a designed program system and labour efforts spent on its realization. The paper defines parameters 
and operators of the genetic algorithm that makes it possible to find optimal characteristics of onboard 
software architecture. 
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Onboard software (OSW) in automated control systems to control satellite communication 
systems is implemented on various types of computers whose characteristics are defined by the 
purpose of systems [1]. These factors influence a rational level of designing automation, labor 
input and duration of software development, etc. However, principles and methods of SW design-
ing vary relatively little.

OSW used in automatic control systems to control satellite communication systems possesses all prop-
erties of complex systems [2]. It contains a large quantity of modules closely interacting during common 
target task solution.

OSW has the common objective of functioning – information processing and decision-making to control 
objects, right up to generation of corresponding control actions [3]. 

Hierarchical structures with several levels of grouping and subordination of modules are widely used 
for ensuring interaction of modules in an integrated complex. Each module has the target task and spe-
cific individual criterion of quality, as a rule, not corresponding to the efficiency criterion of the whole 
system of programs. 

It is believed that choosing this or that alternative of construction of onboard software architecture 
(OSW), one should be guided by dependability criteria and costs for realization of a system with specified 
dependability. It is obvious that statements of these criteria disagree with each other as a system with a 
greater dependability demands larger resources.

The dependability index of a system in the initial model of program system architecture is the value of 
system availability predicted at the design stage. The dependability of the whole system can be achieved 
by introducing program redundancy in separate components of its architecture. The basic resource in 
OSW development is labor expenditures of experts implementing the system. To calculate these indices 
in a model, it is necessary to take into account additional parameters.
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In a component of program architecture, whose functioning is especially critical for dependability, 
program redundancy can be introduced by the method of N-version programming or by recovery block. 
It is obvious that dependability of components with program redundancy is directly proportional to the 
depth of redundancy (or to the number of its various versions) [4] and dependability of the environment 
of versions’ execution (algorithm of voting or acceptance test).

Dependability of multiversion component i at the architectural level j constructed of K versions by the 
method of multiversion programming for any K is equal to [5]:

,

where pij
v is the probability of non-failure operation of a voting algorithm, pij

k is the probability of 
non-failure operation of the version k∈Zij.

Dependability of the multiversion component i at the architectural level j constructed of K versions by 
recovery block method for any K is equal to [5]:

,

where pij
AT is the probability of non-failure operation of the acceptance test for a component i, i=1.., N 

at the level j, j=1.., M; pij
k is the probability of non-failure operation of the version k∈Zij.

The probability of failure of the component i at the level j is equal to:

PFij = 1 – Rij.

Labor input of system engineering is equal to the sum of labor inputs of all components of system 
architecture. During calculation of labor input of components’ development with program redundancy, 
the costs for implementation of versions’ execution environment of the module (NVXij) and the costs for 
implementation of each version of the i-th component at the level j (Tij

k) [6] should be taken into account. 
Labor input of the whole system development of Ts is calculated as follows:

.

where NVXij is the labor input of versions execution environment development (the acceptance test for 
RB or voting algorithm for NVP) (N-version execute environment); Bij is the binary variable accepting the 
value 1 (then NVPij=0, RBij=0) if the program component does not use program redundancy, otherwise 
it is equal to 0;

NVPij is the binary variable accepting the value 1 (then Bij=0, RBij=0) if program redundancy is intro-
duced in the program component by NVP method, otherwise it is equal to 0;

RBij is the binary variable accepting the value 1 (then Bij=0, NVPij=0) if program redundancy is intro-
duced in the program component by RB method, otherwise it is equal to 0.

In case if we model an already existing system, which is planned to be updated, then for those archi-
tectural components which already exist in system, costs are equal to 0 (Tij=0).
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The program component participating in critical control cycles should execute calculations in such 
time that the time of the whole control cycle should not exceed the critical value. If the component is not 
in time to give out control action to the other component, then a failure occurs. 

The average time of the execution of the program component i at the level j is calculated as the sum of 
the component operating time without failures and the average idle time of the component:

,

where PLij
ab is the conditional probability of a failure occurring in the component i at the level j if a 

failure occurs in the component a at the level b, a∈{1,..,Nb}, b∈{1,..,M}, i∈{1,..,Nj}, j∈{1,..,M}; 
PUab is the probability that the component a at the level b will be used; 
PFab is the probability of a failure occurring in the component a at the level b; 
Ntaij is the number of faulty components at lower architectural levels during access to the component 

i at the level j; 
Ntcij is the number of faulty components at all architectural levels analyzed at the same time with the 

component i at the level j; 
Nteij is the number of faulty components at all levels of architecture in which there is an elimination 

of failures during the elimination of a failure in the component i at the level j; 
Ntuij is the number of components at all levels of architecture used at the same time with the component 

i at the level j.
Below the designations of parameters of OSW architecture model [7] are presented:
M – the number of architectural levels in program architecture;
Nj – the number of components at the level j, j∈ {1,…M};
Dij – a set of indexes of components dependent on the component i at the level j, i ∈ {1,…Nj}, 

j ∈ {1,…M};
Eij – a set of indexes of components on which the component i at the level j depends, i ∈ {1,…Nj}, 

j ∈ {1,…M};
Fij – a failure event occurred in the component i at the level j, i ∈ {1,…Nj}, j ∈ {1,…M};
PUij – the probability that the component i at the level j will be used;
PFij – the probability of a failure occurring in the component i at the level j;
Rij – the probability of a failure not occurring in the component i at the level j;
PLnm

ij – the conditional probability that a failure will occur in the component m at the level n if there 
is a failure in the component i at the level j, i ∈ {1,…Nj}, j ∈ {1,…M}, n ∈ {1,…Nm}, m ∈ {1,…M};

TAij – relative access time to the component i at the level j, i ∈ {1,…Nj}, j ∈ {1,…M}, determined by 
the ratio of the average access time to the component i at the level j to the number of faulty components at 
lower levels of architecture during access to the component; parameter TAij can be used, if the component 
operates on the remote or isolated systems;

Ntaij – the number of faulty components at lower levels of architecture during access to the component 
i at the level j;

TCij – the relative time of failure analysis in the component i at the level j, determined by the ratio of the 
failure analysis average time in the component i at the level j, i ∈ {1,…Nj}, j ∈ {1,…M}, to the number 
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of faulty components at all levels of architecture analyzed simultaneously (time for error reproduction 
and its localization relates to the analysis time);

Ntaij – the number of faulty components at all levels of architecture analyzed simultaneously with the 
component i at the level j;

TEij – the relative time of failure removal in the component i at the level j, determined by the ratio of 
restoration average time in the component i at the level j, i ∈ {1,…Nj}, j ∈ {1,…M}, to the number of 
faulty components at all levels of architecture in which removal of failures occurs at the same time;

Nteij – the number of faulty components at all architecture levels in which removal of failures occurs 
during removal of failure in the component i at the level j;

TUij – the relative time of use of the component i at the level j, determined by the ratio of average use 
time of the component i at the level j, i ∈ {1,…Nj}, j ∈ {1,…M}, to the number of components at all 
levels of architecture used simultaneously;

Ntuij – the number of components at all levels of architecture used simultaneously with the component 
i at the level j;

Kij – the program redundancy depth of the component i at the level j;
Zij – the plurality of versions of the component i at the level j;
RTij – the average time of execution of the module i at the level j;
Tij – the labor input of the development component i at the level j;
Tk

ij – the labor input of the development version k of the component i at the level j, k∈Zij, in man-hours;
NVXij – the labor input of development of versions’ execution environment (the acceptance test for RB 

(recovery block) or voting algorithm for NVP (N-version programming));
Bij – the binary variable accepting value 1 (in this case NVPij=0, RBij=0) if the program component 

does not use program redundancy, otherwise it is equal to 0;
NVPij – the binary variable accepting value 1 (in this case Bij=0, RBij=0) if program redundancy is 

introduced in the program component by NVP method, otherwise it is equal to 0; 
RBij – the binary variable accepting value 1 (in this case Bij=0, NVPij=0) if program redundancy is 

introduced in the program component by RB method, otherwise it is equal to 0; 
TR – the average idle time of a system which is defined as the average time during which the software 

cannot carry out its functions;
MTTF – the mean time to failure in system which is defined as the average time during which failures 

in the software do not arise;
S – the availability factor of a program system;
Ts – the general labor input of program system realization.
Mean time to failure in a program system is determined as follows [8]:
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Average idle time of a program system is equal to [8]:

.

The availability factor readiness of a program system is determined as follows:

.

Man-hours for system engineering are equal to:

.

For components in which introduction of program redundancy is possible, the following characteristics 
[9] can be changed:

1. A method of program redundancy implementation: multi-version programming (NVPij=1, RBij=0) 
or recovery block (NVPij=0, RBij=1). If the NVP method is chosen, then the gene value is established as 
0, if the RB method is chosen, then the gene value is established as 1.

2. The variant (alternative) number Varv1 is “failure probability / man-hours”. Possible versions are set 
by the analyst for each component (1≤Varv1≤Vij). Vij is the number of alternative versions of development 
for each component.

3. The variant number Varv2...Varv10 is the probabilities of failure for each version of a component, 
similar to the above point 2 (0≤Varv2..10≤Vij, 0 – there is no version). The limiting number of program 
component versions if redundancy will be applied, is set beforehand by the analyst and there cannot be 
more than 10 versions since a larger quantity brings additional complexity and cost in a component, 
unjustified by increase in dependability.

If genes Varv2..Varv10 take on the value 0, it is considered that program redundancy is not introduced 
in the given component (Bij=1).

For components in which introduction of program redundancy is not provided, only the version Var 
of the component failure probability and corresponding labor input for achievement of this failure prob-
ability changes (1 ≤ Var ≤ the number of versions for the given component).
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Thus, the phenotype of an individual (decision) is formed from variable characteristics of program 
components [10]. Table 1 presents the general type of a phenotype with an example of alleles.

Table 1. Phenotype of an individual

Group of components with the possibility 
of program redundancy

Group of components with no possi-
bility of program redundancy

Component 1

..

Component N Component 1

..

Component M
NVP/
RB Varv1 ..

Varv4
NVP/
RB Varv1 ..

Varv5 Var Var

1 3 0 0 1 0 2 3

Crossing of the chosen individuals occurs with the predetermined probability. If parents are not crossed, 
their cloning takes place.

Crossing occurs by break of parents’ chromosome in the set number of points, and descendants receive 
various attributes of both parents.

In nature there is a huge quantity of attributes and properties of live organisms which are defined 
by two and more pairs of genes and, on the contrary, one gene frequently supervises many attributes. 
Besides, action of a gene can be changed by the neighborhood of other genes and environment condi-
tions. In one of studies as early as in 1928 J.A. Filipchenko proved that alongside with the “basic” 
gene determining an attribute there is a number of genes-modifiers of this attribute. The similar type 
of inheritance is met frequently. Thus, the phenotype, as a rule, represents the result of complex inter-
action of genes [11].

Thus, let us introduce the concept “related genes”. The related genes are genes whose mutual combina-
tion influences a certain attribute of an individual.

Dependability and man-hours for components with possible program redundancy are defined by in-
teracting genes of versions and redundancy method. Breaks of a chromosome can occur both between 
genes of one program component, and between genes of different components. And the probability 
of choosing a chromosome break point between genes of one program component (related genes) is 
predetermined. At uniform cross breeding break can occur either in all points or only between unre-
lated genes.

The mutation of individuals of a population occurs with the specified probability. In addition to the 
probability of mutation application to each individual, the probability of mutation application to its each 
gene is used with the size usually set from 1 up to 10 % [42]. At mutation of binary genes of redundancy 
method a value invert conversion takes place.

Alleles of genes of alternatives “failure probability / labor input” are characterized by a rank scale in 
such a manner that each following version is better in relation to dependability, but it is worse in relation 
to man-hours. Thus, predetermined alternative versions for a specific program component are Pareto op-
timal. The mutation of such genes can occur in two ways:

1. The choice of any alternative “failure probability / labor input” is equiprobable. 
2. The choice of any version “failure probability / labor input” occurs with the probability distributed 

under the law of normal distribution of probabilities for a discrete random variable [12]. And the choice 
of the version current value is impossible. At the mutation of genes of versions of program components, 
for which the value 0 is possible (absence of any version), such value is added as an additional possible 
value. Table 3 presents probabilities of versions’ choice at mutation of a gene of the program component 
version, whose current value is equal to 4, and the total number of specified versions is equal to 7.
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Table 3. Probability distribution of a version choice 

Absence of 
the version Var. 1 Var. 2 Var. 3 Var. 4

(current) Var. 5 Var. 6 Var. 7

0.015625 0.09375 0.234375 0.3125 0 0.234375 0.09375 0.015625

The genetic algorithm is based on ideas of a method with independent Shaffer’s selection for multi-
criterion optimization VEGA (Vector Evaluated Genetic Algorithm) [13].

Selection occurs with the probability proportional to criterion value. The probability of an individual 
to be selected under criterion S is calculated by the formula [14]:

where fi is the suitability of the individual i; 
 
is the average suitability of the population; N 

is the size of the population; .

The probability of an individual to be selected under minimized criterion Ts is calculated by the fol-
lowing formula [15]:

where fi is the suitability of the individual i; C is the constant determining the minimal suitability of 

the  population; N is the size of the population; .

In the considered algorithm the constant C is equal to the maximal suitability of an individual in popu-
lation. Thus, the minimal probability of an individual to be the selected under criterion Ts is equal to 0.

When defining the suitability of an individual, the values S and Ts are calculated under the algorithm 
represented in fig. 1.

Each individual with calculated criteria is recorded into data array. Search of similar calculated earlier 
individual is carried out before criteria calculation for the following individual [10]. This action is reason-
able and allows saving an operating time of algorithm since calculation of criteria is much longer than 
search of an identical individual in data array of decisions.

For the solution of the multi-criterion task of conditional optimization, it is necessary to use the ap-
proach based on conditional task reduction to the unconditional one. Search of Pareto optimal solutions 
is carried out under the design of VEGA method. Task solving with restrictions should belong to a Pareto 
set, as well as it should be in a legitimate range. Therefore, in addition to the offered algorithm, we should 
introduce an additional procedure that allows us to bring solutions into a legitimate range [14].

To make it possible to solve a conditional optimization task, each restriction should be considered as a 
separate criterion function and consequently, an initially conditional task with several criterion functions 
is reduced to the unconditional task of optimization. The transformation of an initial task of conditional 
multi-criterion optimization has the following form [14]:
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Criterion functions of an initial task are F(X) → opt, restrictions of the initial task are G(X) ≤ B. 
Criterion functions of the transformed task are F(X) → opt, restrictions of the transformed task are 

|G(X) – B|→ opt.
For the first several iterations of the algorithm, the initial conditional task is solved, but without tak-

ing into account restrictions. Next, to receive a greater number of solutions belonging to the legitimate 
range, search proceeds this time without taking into account criterion functions of the initial task, but 
restrictions only. Thus, search of solutions is made only as to functions – restrictions, which brings the 
most part of the population into a legitimate range, but with loss of solutions’ quality under criteria of 
optimization [14].

The genetic algorithm for multi-criterion conditional optimization of program architecture [16] is also 
based on ideas of VEGA method (Vector Evaluated Genetic Algorithm) with independent Shaffer’s selec-
tion at multi-criterion optimization.

The difference of VEGA algorithm from GA (genetic algorithm) of unconditional optimization consists 
in the fact that each restriction in it is considered as additional criterion of optimization. With the part 
of generations, the algorithm works without taking into account additional criteria of optimization, and 
then with the rest of generations the algorithm works as to two criteria of restriction violation on S, Ts, 
and criteria of restriction violation RTij.

Input parameters of GA are the following:
- population size (N);
- probability of crossing (prob_cross);
- type of crossing (1,2,3-point, uniform);
- probability of related genes break (prob_cross_inter);
- probability of individual mutation (prob_mutate);
- probability of gene mutation (prob_mutate_gen);
- halt criteria (the maximal operating time time_ga, the number of populations without solution im-

provement stagnancy, the number of populations pop_count);

Fig. 1. Algorithm of optimality criteria calculation 
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- percent of populations for processing of restrictions percent_bound;
- number of restrictions for the period of components’ execution B.
The algorithm is implemented by the following sequence of actions:
1. Generation of parental population P with size N of casual individuals.
2. Calculation of criteria for all individuals of population P.
3. Proportional selection N/2 of individuals from P under criterion S in intermediate population P’.
4. Proportional selection N/2 of individuals by criterion Ts in intermediate population P’.
5. Crossing with probability prob_cross N/2 of casually chosen pairs of individuals from intermediate 

population P’. Generation of basic population P from N chosen individuals.
6. Execution of the mutation operator with the probability prob_mutate on each individual of basic 

population P and on each gene of an individual with the probability rob_mutate_gen. 
7. Calculation of optimization criteria values for all individuals of population P. 
8. Selection from population P of undominated solutions. If there are solutions in the decisions found 

earlier which dominate them, then stagnancy = stagnancy+1.
9. If even one criterion of halt works, then the algorithm stops.
10. If the number of population is less, or equal to percent_bound*pop_count, then move to step 3.
11. Proportional selection of N / (2+Q) of individuals from P under criterion of restriction violation on 

S in intermediate population P’.
12. Proportional selection of N / (2+Q) of individuals under criterion of restriction violation on Ts in 

intermediate population P’.
13. Proportional selection N / (2+Q) of individuals under each criterion of restriction violation for the 

period of RTij component implementation in intermediate population P’.
14. Crossing with probability prob_cross N / (2+Q) of casually chosen pairs of individuals from inter-

mediate population P’. Generation of basic population P from N chosen individuals.
15. Execution of the mutation operator with the probability prob_mutate on each individual of basic 

population P and each gene of an individual with the probability prob_mutate_gen.
16. Calculation of criteria under restrictions for all individuals of population P. 
17. Selection from population P of the best decisions under criteria of restrictions. If there are better 

solutions in the decisions found earlier, then stagnancy = stagnancy+1.
18. If even one criterion of halt works, then the algorithm stops, otherwise move to step 11.

Undominated decisions obtained for each iteration are selected in a Pareto set. Decisions of a Pareto 
set cannot be preferred to each other, therefore after its generation the task can be considered mathemati-
cally solved [17].

The developed genetic algorithm has been tested on specially prepared tasks and has also been used 
in development of the software for corporate control systems and OSW. With the help of the developed 
GA, all tasks have been effectively solved, efficient architectural decisions have been found.
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