
30

Efficiency criterion of biased estimates.  
A new take on old problems 
Viktor S. Mikhailov, D.I. Mendeleev Central Research and Design Institute of Chemistry and Mechanics, Moscow, 
Russian Federation
mvs1956@list.ru

Abstract. The perfect case estimation scenario involves unbiased estimation with minimal vari-
ance, if such estimate exists. Currently, there are no means of obtaining unbiased estimates 
(if they do exist!). For instance, a maximum likelihood estimate (NBT test plan) of a mean time 
to failure Tmn = (total operation time)/(number of failures) is highly biased. Those involved in 
solving applied problems are not satisfied with the situation. Efficient unbiased estimates are 
used whenever such are available. If it is impossible to find an efficient unbiased estimate in 
terms of standard deviation, then biased estimate comparison is to be mastered. The vast 
majority of problems is associated with biased estimates. Within the class of biased estimates, 
estimates with minimal bias are to be sought, and, among the latter, those with minimal bias. 
Such estimates in the class of biased estimates should be called bias-efficient or simply ef-
ficient, which does not contradict the conventional definition, but only extends it. Such search 
process guarantees that the obtained estimates are highly accurate. However, with this defini-
tion of a bias-efficient estimate, there will always be a pair of compared estimates, in which 
the total bias of one estimate is slightly higher than that of the other, the same being the case 
with the total variances of such estimates, but in a different order. In this setting, a formal se-
lection of a bias-efficient estimate becomes impossible and is arbitrary, i.e., the test engineer 
selects a bias-efficient estimate intuitively. In this case, the test engineer’s choice may prove 
to be incorrect. Thus arises the problem of constructing a criterion of efficiency that would 
enable a formal selection of a bias-efficient estimate. The Aim of the paper. The paper aims 
to build an efficiency criterion, using which the choice of a bias-efficient estimate is unambigu-
ously defined through computation. Methods of research. To find the bias-efficient estimate, 
we used integral numerical characteristics of the accuracy of the estimate, namely, the total 
square of the offset of the expected implementation of a certain variant estimate from the 
examined parameters of the distribution laws, etc. Conclusions. 1) For the binomial plan and 
the test plan with recovery and limited test time, performance criteria were constructed that 
allow unambiguously identifying the bias-efficient estimate out of the submitted estimates. 2) 
Based on the constructed performance criteria for various test plans, bias-efficient estimates 
were selected out of the submitted ones.
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Introduction

An efficient estimate is defined as [1]: “An estimate of 
a parameter that has the lowest expected squared devia-
tion from the estimated parameter for any parameter value 
is called efficient.” The classical theory of mathematical 
statistics [1] notes that within the class of all possible pa-
rameter estimates, there is no efficient estimate. Therefore, 
the author of [1] further writes: “It is required to impose 
certain restrictions on the set of estimates, within which we 
are seeking the best efficient estimate. A natural restriction 
of the class of estimates is the class of so-called unbiased 
parameter estimates.” In this case, the efficient estimate for 
the scalar parameter is an unbiased estimate with minimal 
variance. In some cases, Cramér-Rao inequalities help find 
the best unbiased estimate [1]: if an estimate is efficient, 
then, in the above sense, it also is the best, as it has the 
lowest possible variance. 

In estimation, the perfect case scenario involves the 
use of unbiased estimates with minimal variance, if such 
estimate exists. For that purpose, in order to identify an 
efficient estimate, within the class of unbiased estimates, it 
should be analytically proven that the Cramér-Rao inequal-
ity is fulfilled for such estimate. It should be noted that 
Cramér-Rao inequalities are to be satisfied for all values of 
the estimated parameters. However, even for exponential 
families of distributions, for which only efficient estimates 
exist, an efficient estimation using a Cramér-Rao inequal-
ity is only possible for a single function of a parameter. 
The question is even more relevant as regards families of 
distributions that are not exponential. If it is difficult to 
obtain such proof analytically, the total variance should be 
calculated for all values of the estimated parameter. For 
an efficient unbiased estimate, the total variance should 
be minimal.

Currently, there are no means of obtaining unbiased 
estimates (should such exist!). For instance, a maximum 
likelihood estimate (NBT test plan) of the mean time to 
failure Tmn = (total operation time)/(number of failures) is 
highly biased. Those involved in solving applied problems 
are not satisfied with the situation. Efficient unbiased esti-
mates are used whenever such are available. If it is impos-
sible to find an efficient unbiased estimate in terms of mean 
square variance, then biased estimate comparison is to be 
mastered. The vast majority of problems is associated with 
biased estimates.

Within the class of biased estimates, estimates with 
minimal bias are to be sought, and, among the latter, those 
with minimal variance [2]. Such estimates in the class of 
biased estimates should be called bias-efficient or simply 
efficient, which does not contradict the conventional defini-
tion, but only extends it. Such search process guarantees 
that the obtained estimates are highly accurate. Note that 
the experience of constructing efficient estimates shows 
that the resulting unbiased efficient estimate will not always 
have a minimum variance [2]. Rather, on the contrary, 
there will always be an estimate that has minimal variance 

compared to the unbiased estimate. In all cases where 
there is an efficient (unbiased) estimate, there is a biased 
estimate that is more accurate than the efficient one, i.e., 
with a smaller squared error [3, p. 284]. That fact favours 
bias as the primary factor in constructing the evaluation 
efficiency criterion. In order to determine the bias-efficient 
estimate, the total biases and variances are to be calculated 
for all values of the estimated parameter. For an efficient 
biased estimate, each sum must be minimal. Such defini-
tion of an efficient estimate within a particular class of 
biased estimates does not contradict the definition of an 
efficient estimate within a class of unbiased estimates. On 
the contrary, defining an efficient estimate within a class 
of unbiased estimates is a frequent case of defining an ef-
ficient estimate within a certain individual class of biased 
estimates that includes a subclass of unbiased estimates.

Why the integral approach? When comparing using the 
classical method, whereas the variance should be minimal 
for all parameter values at once, we deduce that one of the 
compared biased estimates will have a lower variance in 
one part of the parameter values, while the other will have 
a lower variance in the remaining part, with a comparable 
bias. Comparing them is what the summation of all variances 
(biases) is required for. The sums of biases and variances 
define the efficiency criterion. 

However, with this definition of a bias-efficient estimate, 
there will always be a pair of compared estimates, in which 
the total bias of one estimate is slightly higher than that of 
the other, the same being the case with the total variances 
of such estimates, but in a different order. In this setting, a 
formal selection of a bias-efficient estimate becomes impos-
sible and is arbitrary, i.e., the test engineer selects a bias-
efficient estimate intuitively. In this case, the test engineer’s 
choice may prove to be incorrect. Thus arises the problem 
of constructing an efficiency criterion that would enable a 
formal selection of a bias-efficient estimate.

The Aim of the paper

The paper aims to build an efficiency criterion, using 
which the choice of a bias-efficient estimate is unambigu-
ously defined through computation.

Methods of research

The bias-efficient estimate was found using integral 
numerical characteristics of the accuracy of estimate, i.e., 
the sum square of the bias of the expected realization of an 
estimate from the considered parameters of the distribution 
laws, etc. [2].

Constructing the estimate efficiency 
criterion 

Let us denote by A(θ) the total bias of estimate θ from 
estimated parameter t, and by B(θ) the total variance of 
estimate θ from estimated parameter t. Note that summa-
tion is done within the operating range both for all values 
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of estimated parameter t, and all values of the test plan and 
other parameters (e.g., time it takes to estimate the prob-
ability of no failure (PNF).

For the purpose of constructing an efficiency criterion 
of biased estimates we will characterize arbitrary statistical 
estimate θ by bias and variance. Let us denote by b = E(θ) 
– t the bias of estimate θ from parameter t, where E is the 
mathematical expectation, and by D the variance of estimate 
θ. Then the variance (in the mean square sense) of a certain 
estimate θ from the estimated parameter t is expressed by 
the following formula [1, 4, 5]:

 B(θ) = E(θ – t)2 = D + b2. (1)

Note that, when dispersion changes, the variance as an 
efficiency characteristic also changes by the same value 
(see formula (1)). That is, it changes regardless of the 
dependence on the specific value of estimate bias. Let 
us try to associate the dispersion and bias square in such 
a way as to make the variance change adjusted to bias 
whenever dispersion variates. We will take into consid-
eration the fact that bias is the primary factor in choosing 
an efficient estimate. The newly built characteristic C(θ) 
must be such as, when the dispersion changes by the value 
of δD, for small biases b ≈ 0 + δ, the adjustment for the 
effect of the bias on the characteristic was insignificant, 
and vice versa, for large biases b >> 0, the adjustment for 
the effect of bias on characteristic C(θ) was significant. 
We will require that the variation of characteristic C(θ) 
was linear with respect to characteristics D and b2. The 
product of characteristics D and b2 fulfils this requirement 
to the fullest:

 C(θ) = D·b2. (2)

Out of formula (2) follows that, as dispersion changes by 
value δD, characteristic C(θ) = (D + δD)·b2 = D·b2 + δD·b2 
changes by a value that takes into account the squared bias 
linearly. The opposite is also true, i.e., when the squared 
bias changes by a certain value, characteristic C(θ) changes 
by a value that takes into account the dispersion value lin-
early. Figuratively speaking, characteristic C(θ) reflects on 
the Cartesian axes D and b2 as a rectangle with the area of 
D·b2. Any slight change to characteristics D and b2 modifies 
the area or configuration of the rectangle. Thus, in case of 
slightly different characteristics D and b2, the estimate with 
the minimum characteristic C(θ) (area) should be chosen 
as the bias-efficient. If characteristics C(θ) (areas) are 
equal, the estimate with the lowest bias should be chosen 
as the bias-efficient. Let it be reminded that the criterion 
was constructed only for biased estimates. In the case of 
unbiased estimates, variance B(θ) (see formula (1)) is such 
characteristic (criterion). Note that, for unbiased estimates, 
their realizations are grouped around the true quantitative 
value of the estimated parameter from different sides. When 
defining the efficiency criterion, similar properties are to be 
required from biased estimates.

Let us define the requirements for the process of selecting 
bias-efficient estimates:

– the proposed estimates must be strictly monotonous in 
all their parameters;

– estimates with a minimum bias of A(θ) = b2 or close to 
such are selected.

If, in the process of selection out of a number submitted 
estimates, there is a single unbiased estimate, then the latter 
is the bias-efficient one. For this estimate to be efficient in 
the class of unbiased estimates, it is required to prove the 
Cramér-Rao for such estimate:

– estimates, for which inequality A = b2 > D is fulfilled, 
i.e., the bias prevails over the value scatter of such estimate, 
are excluded;

– estimates are selected, for which the inequality D/A > 4 
is fulfilled, i.e., the estimates, for which the realizations are 
grouped around the true quantitative value of the estimated 
parameter from different sides;

– out of the remaining estimates, the estimate with the 
minimum bias A(θ) = b2 or close to such (+5 ... +20%) 
is selected. In the case a single estimate with minimum 
bias A was selected, such estimate is considered bias-
efficient;

– in case A are equal, the estimate with minimal variance 
is chosen as the bias-efficient one.

The majority of manipulations is replaced by the proposed 
criterion C(θ) = D·b2.

Let us consider examples of constructing a criterion for 
bias-efficient estimate selection.

Binomial test plan. Probability 
of no failure

Here and further, we will use the findings of [2]. Let us 
denote by θ a certain abstract estimate of the probability of 
failure in the course of testing of n products. We will limit 
the scope of testing to 0 < n ≤ 10, which is the cost limit for 
highly dependable and complex products. Then, the total 
bias formula will be as follows:

.

The formula for the total variance is as follows:

.

Let us note that the probability function of the bi-
nomial test plan P∑ steadily decreases as p grows [5], 

therefore, equations  and 

 have a single solution, where 

Pn(k,p) = Сn
rpr(1–p)n-r.

Calculations show that probability γ = 0.5 + x = 0.8181 
corresponds to estimate w that minimizes functional 
A(θ(n;R)). Table 1 shows the results of substituting into 
functionals A(θ(n;R)), D(θ(n;R)) of the following failure 
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probability estimates: v, w, p0 = R / n, p1, p2, p3 [5] and 
u = (R + 1)/(n + 2), where 

p1 = v(0.5;n), R = 0 and p1 = R / n, R > 0;
p2 = w(0.81;n), R = 0 and p2 = R / n, R > 0;

p3 = w(0.81;n), R = 0 and p3 = u, R > 0.
Functionals A(θ(n;R)) and D(θ(n;R)) were calculated 

with the step of ∂p = 10-3. Implicit estimates w and v were 
calculated with the accuracy of 10-4.

Here and further, for the purpose of table construction, 
as part of calculation of characteristic C = D·A, functionals 
A and D were calculated for each value of parameters n and 
p with subsequent individual summation, and based on the 
obtained total values of A and D, characteristic C = D·A 
was calculated.

Note that calculating characteristic C directly as a functional 

is associated with great computational difficulties due to 
the limited word length in the computer system, which, in 
the course of computation, causes clearing of significant 
summable values. That affects the final result.

Unbiased estimate p0 = R / n that was given for compari-
son is excluded from consideration as a bias-efficient one 
despite the fact that it is efficient.

Out of Table 1 follows that estimates v, p1, p3, u are to be 
excluded from consideration, as inequality D / A > 4 does not 
apply to them. Then, out of Table 1 also follows that estimates 
w and p2 have minimal and comparable biases. Their values 
do not differ by more than (0.0037– 0.0015)·100/0.0037 = 
59%. In accordance with the proposed efficiency criterion 
of biased estimates, estimate p2 is to be definitely considered 
efficient. Out of the construction follows that the criterion 
constructed based on characteristic C = D·A unambiguously 
determines the bias-efficient estimate without recurring to 
most of the above reasonings in this paragraph.

The proposed estimates v, w, p1, p2 for the binomial test 
plan have a bias that can be reduced, which slightly modifies 
the estimates as follows:

^v = v(0.5;n,R) – 0.4 / ((R + 1)n);
^w = w(0.81;n,R) – 0.1/((R+1)n);

p10 = ^v(0.5;n), R = 0 and p10 = R / n, R > 0;
p20 = ^w(0.81;n), R = 0 and p20 = R / n, R > 0.

Table 2 shows the results of substituting into functionals 
A(θ(n;R)), D(θ(n;R)) of the following probability of failure 
estimates: ^v, ^w, p10, p20.

Out of Table 2 follows that, for all available estimates, 
inequality D / A > 4 is correct. In accordance with the pro-
posed efficiency criterion of biased estimates, estimate p20 
is to be definitely considered efficient.

Binomial test plan.  
Mean time to failure

Let us assume that the products’ time to failure follows 
the exponential law of probability distribution (d.l.) with 
parameter T0, where the latter is identical to the mean 
time to failure. Let us denote the test time of each of the N 
products as τ.

As the criterion of efficient MTF estimate, a functional is 
constructed that is based on summing the squared relative 
biases of expected estimates θ(R,n) from the parameter t of 
the exponential d.l. (MTF) for all possible values of N, τ, 
T0 = t [2]

.

Integration is done for all possible values of parameter 
(MTF) t out of [0;∞].

The formula for total variance D is

.

Table 1. Results of substituting the proposed failure probability estimates into functionals A(θ(n;R)), D(θ(n;R)) 
for the binomial test plan

Type of functional v
γ = 0.5

w
γ = 0.81

p1
γ = 0.5

p2
γ = 0.81

p3
γ = 0.81 u = (R + 1)/(n + 2) p0 = R / n

A 0.0176 0.0037 0.0113 0.0015 0.0070 0.0104 6·10-33

D 0.0270 0.0402 0.0288 0.0401 0.0226 0.0162 0.0488
D / A 1.53 10.86 2.54 26.73 3.22 1.55 ∞

C = D·A·104 4.752 1.4874 3.2544 0.6015 1.595 1.6848 10-30

Table 2. Results of substitution of failure probability estimates ^v, ^w, p10, p20 into functionals A(θ(n;R)), 
D(θ(n;R)) for the binomial test plan

Type of functional ^v
γ = 0.5

^w
γ = 0.81 

p10
γ = 0.5

p20
γ = 0.81

A 0.0034 0.0030 0.000680 0.000355
D 0.0356 0.0427 0.0425 0.0443

D / A 10.47 14.23 62.5 124.7
C = D·A·104 1.210 1.28 0.289 0.157
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Table 3 shows the results of substitution of the following 
MTF estimates into functionals A(θ(n;R)), D(θ(n;R)): 

T1 = ((n – R)·τ + R·τ / 2) / (R + 1);
T2 = –τ / Ln(1 – (R + 1) / (n + 1));

T3 = –τ / Ln(1 – p1); 
T4 = –τ/Ln(1 – p4), where p4 = u = (R + 1) / (n + 2), R = 0 

and p4 = p0 = R / n, R > 0;
T5 = –τ / Ln(1 – v(R,n,γ = 0.5);
T6 = –τ/Ln(1 – v(R,n,γ = 0.62).

Out of Table 3 follows that, in accordance with the 
constructed criterion, all estimates are to be excluded from 
consideration, as the critical condition D / A > 4 is not ful-
filled for them. However, due to the need to make a choice, 
estimate T6 = –τ/Ln(1 – v(R,n,γ = 0.62)) with a minimum 
bias and maximum characteristic D / A = 0.86 should be 
considered conditionally bias-efficient.

The proposed MTF estimates for the binomial test plan 
are strongly biased, yet this bias can be reduced. The type 
of estimates will change slightly as follows:

T10 = 400 + 0.015·τ + τ·(n – R + R·0.02) / (R + 0.5));
T20 = 400 + 0.015·τ + (–τ·0.7/Ln(1 – (R + 0.4)/(n + 0.4)));

T30 = 400 + 0.015·τ + (–τ·0.7–τ/Ln(1 – p1));
T40 = 400 + 0.015·τ + (–τ·0.7/Ln(1 – p4)),

where p4 = u=(R + 1)/(n + 2), R = 0 
and p4 = p0 = R / n, R > 0;

T50 = 400 + 0.015·τ + (–τ/Ln(1 – v(R,n,γ = 0.5));
T60 = 400 + 0.015·τ + (–τ·0.75/Ln(1 – v(R,n,γ = 0.62)).
Variants of the suggested estimates with smaller biases 

are shown in Table 4.
Out of Table 4 follows that, in accordance with the 

constructed criterion, all estimates are to be excluded from 
consideration, as critical condition D / A < 4 is fulfilled. 
However, as a choice has to be made, the minimum bias 
estimate T20 = 400 + 0.015·τ – τ·0.7 / Ln(1 – (R + 0.4) /  
/ (n + 0.4)) should be regarded as conditionally bias-efficient. 

Further reducing the bias on the selected class of estimates 
would be quite challenging. In this case, the problem of bias 
reduction is solved by searching a wider class of estimates 
that includes a class of unbiased or similar estimates. Note 

that the closer an estimate is to unbiased (characteristic A 
tends to zero), if it exists, its variance increases (see Table 1), 
below tending to the variance of an unbiased estimate, or 
decreases, above tending to the variance of an unbiased 
estimate, which forces their realizations to cluster around 
the true quantitative value of the estimated parameter from 
different sides similarly to the realizations of unbiased 
estimates. This fact follows directly from the Cramér-Rao 
inequality for biased estimates [5, f. 2.14.14]. Therefore, 
for estimates with a near-zero bias, condition D / A > 4 will 
always be fulfilled. It is important to note that the estimates 
of the selected class intended for finding bias-efficient 
estimates are to be strictly monotone with respect to all 
parameters (R, τ, n).

NBτ test plan. MTF

In what follows, the designations of the test plan are ac-
cording to [6, 7]. For the NBτ plan, the number of observed 
failures (r) is a sufficient statistic [6, 7]. Let us denote a random 
number of failures as R, then, for a NBτ test plan, the random 
value R (hereinafter referred to as r.v.) has a Poisson distribu-
tion L(r;∆) with the parameter ∆ = nτ / T0, n = N [4–7]. Then, 
by definition, r is the realization of r.v. R. On the other hand, 
R is the sum of r.v. Xi, each of which is a random number of 
failures of one of the N tested products (1 < i < n). R.v. Xi 
have a Poisson distribution with parameter ∆ / n 

 
. (3)

Let us use formula (3) and examine the properties of the 
parameter estimate ∆ obtained from the equation

 or 

 . (4)

Minimizing the absolute value ԑ(∆) in formula (4), with 
the required accuracy, we obtain the sought point estimate of 

Table 3. Results of substitution of suggested MTF estimates into functionals A(θ(n;R)), D(θ(n;R))  
for the binomial test plan

Type of functional T1 T2 T3 T4 T5 T6

A 1513 11.27 11.26 11.09 11.01 10.59
D 1.962 3.679 7.402 7.534 4.983 9.157

D / A ≈0.01 0.32 0.65 0.67 0.45 0.86
C = D·A 2968 41.4 83.3 83.6 54.8 96.9

Table 4. Results of substitution of suggested MTF estimates into functionals A(θ(n;R)), D(θ(n;R))  
for the binomial test plan

Type of functional T10 T20 T30 T40 T50 T60

A 5.67 4.62 5.34 5.27 5.03 4.85
D 9.65 7.06 3.62 3.69 4.98 5.47

D / A 1.70 1.52 0.67 0.70 0.99 1.12
C = D·A 54 32.61 19.33 19.44 25.04 26.52
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the Poisson parameter Ʌ = Ʌ(R). Having estimate Ʌ(R), we 
easily obtain the MTF estimate T5 = nτ / Ʌ. Let us examine 
the following MTF estimates:

– implicit estimate T5 = nτ / Ʌ;
– T1 = 2nτ if R = 0 and T1 = nτ / (R + 1) if R > 0;
– T2 = 2nτ if R = 0 and T2 = nτ / R if R > 0;
– T3 = nτ / (R + 1);
– T4 = 6nτ if R = 0 and T4 = nτ / (R + 0.5) if R > 0;
– T6 = 1.5nτ / Ʌ if R = 0 and T6 = nτ / (Ʌ + 0.5) if R > 0;
– T7 = nτ / (R + 1) + nτe-(R+1) / (R + 1) [8];
– T8 = nτ / (R + 1) + nτ10-(R+0.5) / (R + 0.5);
– T9 = nτ / (R + β(R)) if β = 0.7;
– T10 = 2.1nτ if R = 0 and T10 = nτ / (R + 1.2) if R > 0;
– T11 = 2.2nτ if R = 0 and T11 = nτ / (R + 1 + 1 / R) if R > 0.
These bias estimates are based on functional (T0 = t) [2]

.

The formula for the normalized variance D is

.

Table 5 shows the results of substituting the suggested 
PNF estimates into functionals A(θ(n;R)), D(θ(n;R)) for the 
NBτ test plan.

Out of Table 5 follows that estimates T1, T6, T8, T10 and 
T have approximately the same biases. The greatest differ-
ence between their values is (0.28 – 0.214)·100 / 0.28 = 23
%. In accordance with the suggested efficiency criterion of 
biased estimates, estimate T11 with the minimum value of 
characteristic C = 0.841 must certainly be regarded as the 
most efficient.

Note that [2] provides the evidence of the fact that, in 
the class of estimates TR = nτ / (R + 1) + nτf(R), estimate 
T1 = 2nτ if R = 0 and T1 = nτ / (R + 1) if R > 0 affords a 
minimum to functional A = 0.25. Let us prove that estimate 
T9 = nτ / (R + β(R)) does not belong to the class of esti-
mates TR, for which it suffices to represent estimate T9 as 
T9 = nτ(R + 2) / (R + 1)(R + β(R)) – nτ / (R + 1)(R + β(R)), 
hence the statement. The only estimate out of class T9 that 
belongs to the class of estimates TR is the estimate of type

 T9 = nτ / (R + β(R)) = nτ(R + 2) / (R  + 1)
(R + β(R)) – nτ / (R + 1)(R + β(R)) = = nτ(R + 2) / (R + 1)
(R + 2) – nτ / (R + 1)(R + 2) = nτ / (R + 1) – nτ / (R + 1)(R + 2)

if β(R) = 2 (or if β(R) = 0, i.e., T2 = 2nτ if R = 0 and T2 = n
τ / R = nτ / (R + 1) + nτ / R(R + 1) if R > 0). Where it is easy 
to see that nτf(R) = –nτ / (R + 1)(R + 2). Therefore, the oc-
currence of the values of the functional A(T10) = 0.234 < 0.25 
on estimate T10 and A(T11) = 0.214 < 0.25 on estimate T11 is 
quite justified.

NBτ test plan. Probability of no failure

Let us denote m = nτ. Let us examine the PNF estimates 
for the time interval g of the form θ(m,g;R) = exp{-g / Ti}, 
where Ti is a certain MTF estimate (see Table 5). Instead 
of estimate T6, let us examine estimate T9 = 4nτ / Ʌ if R = 0 
and T9 = nτ / Ʌ if R > 0. 

The comparison the PNF estimates in terms of the total 
bias value is based on a functional of the form [2]

.

The formula for the normalized variance D is

Table 5. Results of substituting the suggested PNF estimates into functionals A(θ(n;R)), D(θ(n;R))  
for the NBτ test plan. 

Type of functional A D D/A C=D·A
T11 = 2.2nτ if R = 0 and T11 = nτ / (R + 1 + 1 / R) if R > 0 0.214 3.93 18.36 0.841

T10 = 2.1nτ if R = 0 and T10 = nτ / (R + 1.2) if R > 0 0.234 3.89 16.62 0.910
T6 = 1.5nτ / Ʌ if R = 0 and T6 = nτ / (Ʌ + 0.5) if R > 0 0.234 3.98 17.00 0.931

T1 = 2nτ if R = 0 and T1 = nτ / (R + 1) if R > 0 0.25 4.12 16.48 1.03
T8 = nτ / (R + 1) + nτ10-(R+0.5) / (R + 0.5) 0.28 4.00 14.28 1.134
T7 = nτ / (R + 1) + nτe-(R+1) / (R + 1) [8] 0.34 4.1 12.05 1.394

T9 = nτ / (R+0.7) 0.364 4.43 12.17 1.61
T5 = nτ / Ʌ 0.37 4.51 12.18 1.66

T3 = nτ / (R + 1) 0.500 3.72 7.44 2.30
T2 = 2nτ if R = 0 and T2 = nτ / R if R > 0 1.437 7.94 5.52 11.40

T4 = 6nτ if R = 0 and T4 = nτ / (R + 0.5) if R > 0 5.36 10.21 1.90 54.72

Table 6. Results of substituting the proposed PNF estimates into functionals A (θ(m,g;R)), D(θ(m,g;R))  
for the NBτ test plan

Type of functional
A 0.0346 0.0300 0.0641 0.0156 0.0410 0.0157 0.0458
D 0.0987 0.1066 0.0740 0.1501 0.0876 0.1486 0.0851

D / A 2.85 3.55 1.15 9.62 2.13 9.46 1.85
C = D·A·103 3.415 3.198 47.43 2.341 35.91 2.333 3.914
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Table 6 shows the results of substituting the proposed 
PNF estimates into functionals A (θ(m,g;R)), D(θ(m,g;R)) 
for the NBτ test plan.

Out of Table 6 follows that estimates  and  
have approximately the same biases. Their values differ by 
(0.0157 – 0.0156) · 100/0.0157 = 0.63%. According to the 
proposed efficiency criterion of biased estimates, estimate 

 with the minimum value of characteristic C = 2.333 is 
to be regarded as the most efficient. 

Example 1. In the course of dependability testing of a set 
of 1, 2, ..., 10 products, no failures occurred. It is required to 
estimate the PNF of the inspected batch of products using 
bias-efficient estimates for the binomial test plan and the 
test plan with recovery and limited test time. The calculation 
results are given in Table 7.

Out of Example 1 follows that for the binomial plan 
and the test plan with recovery and limited test time, in the 
setting of Example 1, the bias-efficient estimates differ (in 
case of R = 0). It is up to the test engineer to choose which 
estimates to use in this case.

Example 2. In the course of 1000-hour dependability 
tests of a set of 1, 2,..., 10 products, no failures occurred. It 

is required to estimate the MTF of the inspected batch of 
products using efficient estimates for the binomial test plan 
and the test plan with recovery and limited test time. The 
calculation results are given in Table 8.

Out of examples 1 and 2 follows that for the binomial plan 
and the test plan with recovery and limited test time, the outputs 
of bias-efficient estimates differ (case of R = 0). It is up to the 
test engineer to choose which estimates to use in this case.

Afterword

A general approach is defined to constructing an ef-
ficiency criterion of biased estimates. For various test 
plans, performance criteria were constructed that allow 
unambiguously identifying the bias-efficient estimate out 
of those submitted. However, the problem of constructing 
(obtaining) efficient estimates (biased and not) with good 
statistical properties remains at the focus of the dependability 
theory and awaiting a solution.

Conclusions

1) For the binomial plan and the test plan with recovery 
and limited test time, performance criteria were constructed 
that allow unambiguously identifying the bias-efficient 
estimate out of the submitted estimates.

Table 7. Results of calculating the PNF of Example 1 (τ = g, R = 0)

N = n
p20 = ^w(0.81;n), R = 0 and p20 = R / n, R > 0;
P20 = 1 – p20(R = 0) = 1 – ^w(γ = 0.81, R = 0)

Binomial plan

PNBτ(T9) = exp{–gɅ / 4nτ}, g = τ, R = 0, 
Ʌ(R) = 0.693148

NBτ plan
1 0.91 0.841
2 0.95 0.917
3 0.965 0.944
4 0.973 0.958
5 0.978 0.966
6 0.982 0.972
7 0.984 0.976
8 0.986 0.979
9 0.988 0.981
10 0.989 0.983

Table 8. Results of MTF calculation for Example 2 (τ = 1000, R = 0)

N = n
T20 = 400 + 0.015·τ +

+ (–τ·0.7 / Ln(1 – (R + 0.4)/(n + 0.4)))
Binomial plan

T11 = 2.2nτ, if R = 0 and T11 = nτ / (R + 1 + 1 / R), if 
R > 0

NBτ plan
1 2495 2200
2 4254 4400
3 6008 6600
4 7759 8800
5 9511 11000
6 11261 13200
7 13012 15400
8 14762 17600
9 16512 19800
10 18263 22000
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2) Based on the constructed performance criteria for vari-
ous test plans, bias-efficient estimates were selected out of 
the submitted ones.
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