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Analysing the effect of information redundancy on the dependability indicators of distributed information systems

Introduction

Today, information technology is a key element of the 
managerial control infrastructure that allows improving 
its efficiency, minimizing the cost of various resources, 
stimulating labour productivity and other management 
performance indicators.

The operational dependability of any automated in-
formation system significantly depends on the integrity 
of the data it uses. The matter of ensuring a high system 
dependability and integrity of the data it uses is of particular 
relevance for large, geographically distributed multi-level 
systems of various purpose, such as most advanced infor-
mation systems operated by the Russian Railways, e.g., 
KASANT, the Automated System for Tracking, Supervi-
sion and Elimination of Technical Failures and Depend-
ability Analysis [1].

Connecting hundreds and thousands of computers with 
communication channels into large-scale computer networks 
of various scales and topologies allowed creating distributed 
automated information systems (DAIS) that, compared with 
local systems, have acquired qualitatively different features 
and capabilities [2, 3].

Among other things, the integrity of data stored on 
multiple storage media may be affected by various 
negative factors [4]. Such factors may include: errors 
and malfunctions [5] of computer equipment, software 
errors, operator errors caused by non-observance of 
guidelines and regulations. Errors in the operation of data 
storage devices may cause distortion and even loss of 
data, failure of individual or several network nodes and, 
in severe cases, of an entire distributed system. In such 
cases, significant resources and time may be required to 
restore corrupted data.

The use of information redundancy in distributed infor-
mation systems is one of the efficient methods for ensuring 
high data integrity and dependability of such systems. Cur-
rently, information redundancy is widely used in the form 
of two types of data redundancy [3, 6]:

- online redundancy that consists in creating online 
backup (OB) data from a certain set of copies and/or his-
torical data arrays that are used to improve the reliability of 
processing of incoming inquiries by the distributed system 
in the event of data errors or their partial loss during inquiry 
processing;

- recovery redundancy that consists in creating spe-
cial recovery backup (RB) data that are used only for 
restoring real-time data if they are affected by corrup-
tion or errors.

Second, since the examined information systems have 
a distributed geospatial topology, two primary methods of 
storing the two types of backups can be used, i.e., central-
ized and decentralized. In case of centralized storage, the 
backup is located in a single, central node of the system. In 
case of decentralized storage, the data backup is located in 
several system nodes selected in accordance with a certain 
backup localization algorithm [6].

Third, if the number of system nodes is high, there are 
many options for backup allocation, which complicates the 
choice of the best configuration. That causes the require-
ment to define and solve the problem of selecting the best 
backup allocation. 

Fourth, when looking for the best allocation of distrib-
uted backup across network nodes, various parameters of 
the network itself need to be take into consideration. Those 
include the bandwidth of communication channels, traffic 
and average message latency, cost of using computers and 
network channels, etc.

Strategies for online backup 
and redundancy

Today, three online redundancy strategies are used to en-
sure the integrity of data that take into account the specifics 
of their use in information systems [3]:

Strategy I. According to this strategy, a backup is created 
and then used that consists of a certain number of copies of 
the permanent (rarely modified) data array. Processing of 
each inquiry to the array’s data starts with the main array. 
If the array is corrupted, the inquiry is processed using the 
data from the first copy, and so on. 

Strategy II. This strategy uses a backup that includes a 
certain number of historical versions of an array with fre-
quently modified data. Array history APi is its exact copy 
created at time  and the change log of the array’s 
data that occurred within the time interval (ti+Δt). In case 
the main array is corrupted, it is restored using history APN. 
If the history is corrupted in the course of restoration, it is 
restored using history AP(N–1).

Strategy III. This strategy is mixed and restores the 
corrupted main array first by using copies of the array 
(according to strategy I), and, if all copies are corrupted, 
by using the backup from the history (according to 
strategy II).

The use of OB significantly increases the dependability 
of the distributed system when processing inquiries, but 
does not completely eliminate the possibility of the OB 
itself becoming corrupted. The recovery backup data (RB) 
is used for restoring a corrupted OB. There are two main 
options for using the RB [6]:

1) The first option is used in case of decentralized alloca-
tion of OB in several system nodes. If an OB is corrupted 
in a certain node of the system, it is restored using another 
uncorrupted instance of the OB located in the nearest node. 
In this case, this OB is used as an RB.

2) The second option involves using a special RB, the 
magnetic media archive (MMA). The MMA is used only for 
processing inquiries to restore a corrupted OB. The MMA 
may be hosted in a single network node or multiple instances 
of it can be hosted in multiple nodes.

The paper examines two strategies for restoring a cor-
rupted OB, i.e., B-1 and B-2 that help significantly improve 
data integrity in distributed systems [7]. According to 
strategy B-1, all copies of data arrays that are required for 
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OB restoration are created sequentially based on RB data. 
The second strategy, B-2, differs from the first one in that, 
when obtaining the next copy, data is used not only from 
RB, but also all previously obtained copies of the data array 
to be restored.

Operational dependability indicators 
of a DAIS that uses online backup for 
restoring corrupted data

Let us consider the primary indicators of operational 
dependability of a DAIS that, for the purpose of improving 
such dependability, uses only online backup with no MMA. 

In terms of dependability, the operation of a DAIS, in 
whose nodes an online data backup is hosted, can be rep-
resented as a process of such system’s transition within the 
space of possible states. System transitions from one state 
into another occur as a result of failures of system nodes that 
process incoming data inquiries and/or after the restoration 
of previously failed nodes. Thus, the state of a DAIS at any 
given time can be characterized by the number of failed and 
that of operable nodes.

When a certain system node processes a data inquiry, 
the OB of such node may become corrupted. As the re-
sult, the node becomes inoperable and no longer able to 
process incoming inquiries. The node’s transition into 
such state will be considered a failure of the node. Since 
the system under consideration does not use recovery 
redundancy, the failed node will remain in this state. Let 
us assume that after a node fails, all incoming inquiries 
will be evenly distributed for processing among all still 
operable system nodes with an OB. In case all redundant 
nodes fail, the system will become unable to process 
incoming inquiries. Such state of a DAIS we will also 
interpret as system failure. 

Let us denote by M the number of DAIS nodes hosting 
online backup, and by H the set of all DAIS states. Set H 
consists of the following elements: H0, all system nodes are 
operable, Hm, m-th node failure, Hmn, failure of nodes m and 
n, H1,2,...,M, all M system nodes with an OB failed, system is 
inoperable.

Then, set H of all system states and its power |H| will 
be equal to:

At any moment in time t, the system may be only in 
one state ξ(t)=H(t)∈H. Let us assume that the DAIS may 
remain in the initial state or transition into another state at 
regular time intervals. At the end of each such period of time, 
with a certain probability, the system either transitions into 
another state (one or more nodes failed simultaneously) or 
remains in the same state (none of the nodes failed). Such 
transitions between possible system states are called steps 
of a random process. We denote by ξ(t), t≥0 the random 
value that describes the process of a system transitioning 
from one state into another.

Let us assume that at the moment of time t the system is 
in state ξ(t). Let us assume that, within a single time interval, 
node j processes λj(t) inquiries, provided that the system is 
in state ξ(t). 

Let us also assume that at the initial moment of time t0 
the system is fully operable and has no failed nodes. Let 
us denote by ξ(t0)=H(t0) the initial operable system state at 
the moment of time t0, and by  the number of 
inquiries that node j is processing at the moment of time t0.

After a certain period of system operation time oper-
able, node j, at the moment of time t, will be processing 
λj(t)inquiries:

	 	 (1)

In formula (1), Iо(t) is the set of numbers of the system 
nodes that failed by time t, while  is the 
number of system nodes hosting a backup that are operable 
at time t.

When processing a single inquiry in node j, a failure may 
occur with probability Qj. Then, for a single time interval 
(t, t + 1), probability τj(t) of node j failing and probability 
βj(t) of no failure will be, respectively, equal to: 

	 	 (2)

By sequentially numbering all the elements of set H 
we obtain set S of system states that consists of the same 
number of elements:

.

The above system transition from one state into another 
is a homogeneous process, as the future state of the system 
does not depend on its previous transitions, but only on its 
current state [8, 9]. Then we can state that conditional prob-
ability that the system, at moment t, 
is in state Sj, provided that the system, at moment u, was in 
state Si, will be equal to: 

At the same time: 

T h a t  m e a n s  t h a t  c o n d i t i o n a l  p r o b a b i l i t y 
 does not depend on moments of 

time t and u, but depends on distance (t–u) between such 
moments. Therefore, such conditional probability depends 
on the time interval from moment u to moment t.

Let us suppose that pij(t–u) is the conditional probability 
of an event that corresponds to the transition of the system 
from state Si into state Sj within a time interval equal to 
(t–u). Let us assume that the system’s transitions from one 
state into another occur within a single time unit. Then, 
the difference between the moments of time t and u will 
be equal to 1 (t–u=1), while the conditional probability 

 is the transition probability of the 
system for states Si and Sj.
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The values pij of transition probabilities of the examined 
process will be calculated using the formula:

	 (3)

Formula (3) uses the following notations:
I0(t), set of numbers of system nodes that failed by time t.
Ip(Si), set of numbers of operable nodes of a system that 

is in state Si;
τn(Si), probability of failure of node n per unit of time 

when the system is in state Si;
R=[I0(Si) – I0(Sj)], set of numbers of the nodes that failed 

during the transition of the system between two states;
Ip(Si), set of numbers of the nodes that are operable in 

system state Si.

βn(Si) = τn(Si).

In the examined process, the system transitions between 
various states can be formally represented as an oriented 
graph. The system states in the graph are represented by 
its vertices, while oriented arcs correspond to the system’s 
transitions between states (vertices of the graph). 

Fig. 1 shows an example of an oriented graph of a ran-
dom system transition process. The system consists of M = 
2 nodes with multiple states: S0=H0; S1=H1; S2=H2; S3=H1,2; 
ξ(t0)=S0.

Since the failed nodes are not restored in this case, the 
system can be considered a non-restorable item that has a 
finite set of operable states and one state of complete failure 
[8, 9]. The process of system transition between the different 
states is an absorbing discrete-time Markov chain [9, 10]. 

Let us examine the following important indicators of 
system dependability: T1, mean time to failure; Q(t0) and 
Q(t,t+t0), probability of system failure within time intervals 
[0,t0] and [t,t+t0]; P(t0) and P(t,t+t0), probability of no failure 
within time intervals [0,t0] and [t,t+t0];

Let us deduce and analyse the above dependability in-
dicators for the case of a system that operates based on a 
homogeneous directly connected network (for the situation 
of a heterogeneous network, the indicators are deduced and 
analysed similarly using formulas (1)–(3)).

Let us denote by  the set of all states of a 
system, whose set of nodes with online backup is equal to N. 
Let us denote by Sj such system state, in which j nodes with 
online backup have failed. Let the initial rate of inquiries 

processed by each node of the system in state S0 be equal to 
λ0. The the rate of inquiries processed by network nodes that 
are operable in system state Sj will be denoted as λj. Then, 
in accordance with formula (1), we obtain the following 
formula for calculating λj: 

	 	 (4)

The probability τj that, within a single time interval, one 
of the nodes of the network in state Sj fails – taking into ac-
count formula (2) – will be calculated as follows: 

	 	 (5)

The transition probabilities for the examined network, 
taking into account (3), will be calculated using the follow-
ing formula:

	 	 (6)

Since the system does not use recovery redundancy, the 
failed node is not restored, and the system will eventually 
enter state SN, in which all system nodes will be inoperable. 
Moreover, pNN=1, since SN is an absorbing state.

Thus, as a result, we have the matrix P=pij of probability 
of system transition between states, initial state of the system 
S0 is known, the system has one absorbing state SN and a set 
{S0, S1..., SN–1} of operable states. Then, it can be affirmed 
that there is an absorbing discrete-time Markov chain. The 
set S1= {S0, S1..., SN–1} of non-recurrent states is defined for 
it. I.e., the set of operable system states, in which not all 
nodes have failed. As well as a single-element set of absorb-
ing states S2= {SN} (when all system nodes are inoperable).

Since a Markov chain has a single absorbing state, it will 
eventually transition from the initial state into such absorb-
ing state. Let us identify the mean number nij of steps, after 
which the chain will be in one of the non-recurrent states 
Sj∈S1 before absorption, provided that state Si was its initial 
state. Each step from state to state takes the system a unit 
time interval. Hence, value nij can be considered the mean 
time the system spends in state Sj before absorption, provided 
that Si was the initial state of the system. The initial state Si 
itself brings to value nij a contribution equal to 1 if i = j and 
0 if otherwise, i.e.:

The chain enters state Sm in one step from state Si with 
probability pim. If we assume that Sm∈S2, then the chain will 
never transition into state Sj. If Sm∈S1, then, in the course of 
nmj steps, the chain will be in state Sj. Hence, we can write:

Fig. 1. Graph of the random transition process for a system of 2 nodes
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This equality in matrix form looks as follows:

 or .

In this formula, I=δij is the identity matrix corresponding 
to the Kronecker delta of dimension (N×N);  is a trix of 
dimension (N×N) that describes the chain’s behaviour in the 
set of non-recurrent states S1. It is derived from matrix P=pij 
by removing the last column and the last row. 

We will derive the fundamental matrix  for the absorb-
ing Markov chain by premultiplying by  both parts 
of the above equation [10]:

	 	 (7)

Let us identify the mean time ti of the chain being in the 
set of states S1 by using matrix , given that the initial state 
of the chain is state Si. Obviously, ti=0 if Si∈S2. Therefore:

	 	 (8)

The validity of formula (8) follows from the fact that it is 
based on the premise that the time the chain remains in the 
set of states S1 is equal to a sum of random variables. Or, in 
other words, it is equal to the sum of each of the individual 
times of the chain remaining in each of the non-recurrent 
states of set S1. Moreover, the value of the mean sum of 
random variables is always equal to the sum of the mean 
values that make such sum [11].

As previously identified, pij(n) is the probability of the 
system transitioning from state Si to state Sj in n steps. 
Then, taking into account the total probability formula, 
we will deduce that this probability is calculated using 
the formula:

The resulting formula in matrix form will be as follows: 
P(n)=Pn. In other words, the probability matrix of system 
transitions in n steps is equal to the n-th power of the sys-
tem’s transition probability matrix.

Within the time interval from 0 to t0, the system will 
complete t0 steps, since, in a unit interval, the system com-
pletes one transition step. Then, given that p0N(n)=0 if n<N, 
we deduce:

According to the conditional probability formula, prob-
ability of no failure P(t,t+t0) within the interval between t 
and (t+t0) is defined as P(t+t0)=P(t+t0)/P(t). It follows that 
the probability of system failure Q(t+t0) within the interval 
between t and (t+t0) will be equal to Q(t+t0)=1–P(t+t0)/P(t).

Using formula (8), let us identify the value of the system’s 
mean time to failure T1. Since, in our system, the initial state 
is S0, while the absorbing state is SN, the sought time T1 is 
identified using formula:

If, for the examined Markov chain, matrix  is 
calculated using formula (7), we will deduce:

Since, in this case, nii=(1–pii)
–1, we will deduce that the 

system’s mean time to failure T1 is equal to:

Let us assume that the system’s parameters and the value 
of the unit time interval are such that the probability of an 
event consisting in a simultaneous failure of two or more 
system nodes is close to zero, i.e.:

	 	 (9)

Given that assumption, let us consider value T1 of the 
system’s mean time to failure. Fig. 2 shows the transition 
graph for the system that corresponds to the examined as-
sumptions.

Having defined matrix  using formula (7), we will de-
duce: njj=1 if i>j and  if i ≤ j. Then, the system’s 
mean time to failure T1 is equal to:

Let consider the probabilities  of an event 
that consists in the fact that the system does not leave state 
Sj within a single time interval. The system nodes use OB 
created in accordance with one of the three backup strategies 

. Let us prove that relation (10) is true for the 
examined probabilities

	 	 (10)

Fig. 2. Graph of a random transition process of a system in a set of states S



9

Analysing the effect of information redundancy on the dependability indicators of distributed information systems

Taking into account formulas (4)–(6), we deduce:

	 	 (11)

In [7], it was proved that, if OB was created using the 
three online backup strategies , for the prob-
abilities  of successful processing of inquiries (if the OB 
of the node, in which the inquiry is processed, is not cor-
rupted), the following formula is true:

.

Then, both formula (10), and the expression  for the 
mean time to system failure is true as well: 

.

The above findings can be formulated as the following 
statement.

Statement 1. Using backup strategy I for creating 
OB in distributed systems that do not use recovery 
redundancy enables the longest mean time to failure 
compared to the other online redundancy strategies 
(strategies II, III).

Value P(t0) of the systems’ probability of no failure within 
time interval [0,t0], taking into account formula (9) for the 
examined configuration of distributed system, i.e., with no 
recovery redundancy, will be equal to:

Moreover, P(t0)=0 if t0<N.

Indicators of operational dependability 
of a DAIS that uses magnetic media 
archives for restoring corrupted data

Let us examine the operational dependability indicators 
of a DAIS that uses recovery redundancy based on magnetic 
media archives. 

A magnetic media archive is a special set or several 
sets of a certain number of copies and/or histories of 
data arrays. MMA is stored in one of the system’s nodes 
(centralized archive) or in several nodes in the case of 
decentralized storage of several identical copies of mag-
netic media archives. [12]. MMA is used exclusively 
for restoring OB that has been corrupted in one or more 
nodes of a distributed system, thus improving the system’s 
dependability. 

Let us assume that, when a node with an MMA pro-
cesses an inquiry for restoring a corrupted online backup, 
with certain probability, the node with the MMA itself may 
fail. Taking into account this possibility, let us analyse the 
operational dependability indicators of the DAIS that uses 
recovery redundancy in the form of magnetic media archives 
that themselves may be in a state of failure.

When processing a data inquiry in a node with an OB, the 
latter may become corrupted resulting in the failure of such 
node. The operability of the failed node is restored using 
one of two restoration strategies: B-1 or B-2 using MMA. 

A failure of an entire DAIS system will be understood 
as such system state, whereas all system nodes with an OB 
and all MMA have failed.

In the state of failure, a DAIS is unable to process incom-
ing data inquiries or restore the operability of nodes with an 
OB due to the failure of all MMA.

Let us assume that the following assumptions are true: 
1) inquiries arriving to a failed node with an OB are not 
redirected to operable nodes and are not processed until the 
node has been restored; 2) should a node with an MMA fail, 
it is not restored; 3) all inquiries for restoring nodes with 
corrupted OB arriving to the failed node with an MMA are 
evenly distributed and redirected to other operable nodes 
with an MMA; 4) inquiries for restoring failed nodes with 
an OB are evenly distributed among all operable nodes 
with an MMA. 

To describe the operation of such DAIS, we will use a 
discrete-time homogeneous absorbing Markov chain. Let us 
assume that the system parameters are such that the prob-
ability of failure of more than one node with an OB or more 
than one MMA over a unit time interval of system operation 
is close to zero. Given that assumption, let us define set H of 
information system states .

State Hm,n corresponds to a state of the DAIS, in which 
m magnetic media archives and n nodes with an OB are in 

Fig. 3a. Transition graph of a distributed system in a set H of possible states

Fig. 3b. Transition graph of a distributed system in a set S of possible states
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a state of failure. Let us suppose that, over a unit interval of 
operation (one-step of the Markov process), the system may 
transition from state Hm,n into state Hm+1,0 if n = 0. While if 
m = M, the system transitions to state HM,n+1 or may remain 
in the initial state. Given the above assumptions, the graph 
of system transitions will be as shown in Fig. 3а.

Based on set of states H, let us construct set 
o f  s ta tes  ,  K=M+N–1,  where  S : 

. Element Si of set S if 
0≤i<M is associated with state Hi,0, while if i=M state HM,1 
and if M<i≤K state HM,i. The constructed set S is associated 
with the system transition graph shown in Fig. 3b.

Let us assume that, with probability pij, the system can, 
in one step, transition from state Si into state Sj. Given the 
above assumptions, it can be affirmed that: 

pij≠0 if i = j or 
j = i+1, pkk =1 and pii + pi,i+1 =1 if 0≤i≤K–1.

Let us assume that, within a unit interval, λ data in-
quiries arrive to each of N system nodes with an online 
backup. Each node, while a single inquiry is processed, 
may fail with probability Q=1–P or successfully process 
it with probability P. Since we have assumed that all 
inquiries for restoring nodes with an OB are evenly dis-
tributed among operable nodes with an MMA, then, if the 
system is in state S0, each node with an MMA receives 
μ0 restoration inquiries over a unit interval of system 
operation time:

.

On the other hand, in the course of OB restoration inquiry 
processing, the MMA itself may become corrupted with 
probability QA=1–PA. Here, PA is the probability of success-
ful processing in a node with an MMA of an OB restoration 
inquiry. Should a node an MMA fail, the OB restoration 
inquiries it received start being evenly distributed among 
the still operable nodes with an MMA. 

Let us suppose that the system is in state Si ,  
then, within a unit interval, each node with an MMA receives 
μi inquiries for restoring corrupted online backups in the 
network nodes:

Then, within a unit interval, an operable MMA in state 
Si, may fail with probability φi. Probability φi is equal to 

. On the other hand, a node with an MMA can 
successfully process an inquiry to restore the OB with prob-
ability . The transition of the system in one step 
from state Si into state Si+1  occurs with prob-
ability pi,i+1 that is calculated using the following formula: 

	 	 (12)

Taking into account the findings of the above paragraph, 
we obtain that the value of probability pi,i+1, if ,  
is equal to:

	 	 (13)

Let us assume that, should all nodes with an MMA be 
corrupted (i≥M), the failed node with an OB is not restored. 
All data inquiries received by such node are evenly distrib-
uted among the still operable nodes with an online backup.

For the examined distributed system configuration, in ac-
cordance with formula (7) and taking into account formulas 
(12) and (13), we obtain the fundamental matrix  of a 
Markov chain, in which its element is equal to:

Next, let us identify the operational dependability indica-
tors of the examined system that uses recovery redundancy 
in the form of undependable MMA. Nodes with MMA may 
fail when processing inquiries for restoring a corrupted OB 
in system nodes. Such distributed system may be considered 
as a non-restorable item. 

Let us assume that the system is in initial state S0. Then, 
it can be asserted that the distributed system’s mean time to 
failure T1 is equal to the mean time T1 the system will spend 
in the set of non-recurrent states. The formula for calculating 
time T1 is set forth below:

Taking into account formulas (12) and (13), the formula 
for calculating T1 is transformed as follows:

In [7], for the two restoration strategies B-1 and B-2, 
inequality  was proved, out of which follows 
that the following similar inequality for the mean time to 
failure is true:

.

Out of that inequality follows that the following state-
ment is true.

Statement 2. Recovery strategy B-2 in distributed sys-
tems that use MMA ensures a mean time to failure greater 
than recovery strategy B-1.

In [7], it was proved that if OB is created using three 
backup strategies , for probabilities  of suc-
cessful inquiry processing (if the OB of the node, in which 
the inquiry is processed, is not corrupted) the below formula 
is true.

.
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If OB in the nodes of a distributed system is created 
using one of the three backup strategies with redundancy 
parameters , then, in accordance with 
the findings of [7], for probability (P=1–Q) of successful 
processing of data inquiry in node i, the following formula 
is true: 

Taking this formula into account, the validity of the fol-
lowing inequality is proven:

Let us formulate the findings in the form of the follow-
ing statement.

Statement 3. Applying strategy I of online backup in 
distributed information systems enables a mean time to 
failure greater than that ensured by strategies II and III of 
online backup. 

Let us consider the probability P(t0) of no failure and the 
probability Q(t0) of failure of a distributed system within the 
time interval [0,t0].

Based on the earlier findings, we deduce:

where: 

Within the time interval [0,t0], the system will fail with 
probability Q(t0)=1–P(t0). For time interval [t,t+t0], the 
values of probability P of no failure and probability Q 
of system failure will be calculated using the following 
formulas:

Conclusion

The paper examines methods for improving the opera-
tional dependability of distributed automated information 
systems by means of information redundancy. An analysis 
is made of the efficiency of the online backup strategies in 
nodes of a distributed system and strategies of restoring 
a corrupted OB. The paper analyses the effect of online 
and recovery redundancy strategies on such indicators 
of DAIS operational dependability as the mean time 
to failure, probability of system failure and probability 
of no failure within a given time interval. A number of 

statements regarding the efficiency of the examined 
strategies in terms of the time of DAIS time to failure 
were substantiated.

The findings referred to in this paper can be used 
at the stages of design, development and operation of 
DAIS of various classes and purposes. These findings 
may be of particular relevance for such large-scale 
geographically distributed multi-level automated sys-
tems as railway ACS-class systems. For such systems, 
the problems of ensuring the operational dependability 
and data integrity become of particular importance and 
relevance. 
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