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Abstract. The paper examines the automatic train operation system as part of the locomotive 
control and protection system, the remote supervision centre’s means for control of onboard 
and trackside machine vision facilities. The focus is on the dependence of the system’s safety 
and dependability on the dependability characteristics of its components and adverse weather 
effects. The criteria of a system’s wrong-side and right-side failures were defined, the graph 
models were constructed of the safety and dependability states of an automatic train operation 
system. The Markovian graph method of calculating the safety and dependability of complex 
systems was substantiated. That allowed defining such key safety indicators of an automatic 
train operation system as the mean time to wrong-side failure, probability of wrong-side failure, 
wrong-side failure rate. The study established that the safety of an automatic train operation 
system primarily depends on the dependability of machine vision facilities. The growth of the 
system’s wrong-side failure rate is limited to half the failure rate of machine vision facilities. 
It was also established that the dependability of an automatic train operation system is defined 
by the failure rate of a locomotive control and protection system and the failure rate of machine 
vision facilities. The conducted analysis allows concluding that in order to achieve an accept-
able level of safety of an automatic train operation system, efforts should focus on machine 
vision redundancy, ensuring the SIL4 functional safety of on-board and trackside machine vi-
sion facilities, as well as regular comparison of the outputs of on-board and trackside machine 
vision facilities, redundant output comparison, integration of the outputs in motion. Additionally, 
adverse weather effects are to be countered by improving the efficiency of machine learning 
of the machine vision software.
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1. Introduction

Ensuring the safety of a complex technical system, in 
which information is processed using neural networks, 
requires special methods of safety case preparation [1].

The primary problem associated with the development 
of such method consists precisely in the fact that the above 
computer system is unstable in terms of the structure of the 
information processing algorithm, and classical methods of 
probabilistic estimation in the form of two and more inde-
pendent hardware and software information processors, ap-
plication of different software products in the processors, etc. 
[2] are difficult to use as part of the safety case preparation.

That is why redundant information processors in the 
form of onboard machine vision cameras for safe obstacle 
detection are unlikely to achieve the required safety level 
due to the unknown testing time of such self-trained, i.e., 
ever-changing, system for vital information processing.

Braband and Shäbe [1] intended to use statistical methods 
for safety case preparation, as well supposed the obligatory 
inclusion in the processing system of an additional device, 
whose safety could be proven by conventional means due 
to its unchanging structure.

Shubinsky and Rozenberg [3, 4] proposed using the 
so-called multi-level structures for safety case preparation 
that allow integrating safe systems and information systems 
with the introduction of the information processing criterion 
subject to the safety requirements. This approach has shown 
good results in the development of advanced onboard and 
trackside safety systems. An extremely important property 
of system safety evaluation was also used, i.e., obtaining 
reliable information on a facility’s background in terms of 
safety.

For the purpose of safety case preparation of an intelligent 
system with a neural network, the principles of multi-level 
safety system should be used. The difference is that, in this 
case, the focus should be not on an individual intelligent 
device, i.e., an onboard machine vision camera, but on an 
entire system of technical assets within the locomotive’s 
area of operation.

Indeed, the operation of a locomotive camera with a 
pre-designed software for processing obstacle information 
depends not only on the prior measures aimed at training 
the neural network, but also on specific factors that affect 
the operation of the camera hardware, software faults, etc. 
In addition, it should be noted that the effects of the external 
environment, i.e., snow, fog, rain, cause changes within the 
obstacle acquisition area, which directly affects safety, as 
it is associated with the length of the trains’ braking path.

In this context, the situation ahead of the train is addition-
ally monitored from the special control centre, where an 
operator driver supervises several locomotives [5].

The difficulty of this method consists in the fact that the 
critical component is the operator driver’s response that, in 
turn, depends on the stability of the video image transmis-
sion from the onboard camera and the dependability of the 
broadband radio communications in a particular location.

On the other hand, dividing the information processing 
into two sub-processes (in the form of internal intelligent 
processing of information onboard for the purpose of 
decision-making on the track vacancy and in the form of 
communication of the original visual information to the op-
erator driver for decision-making) allows improving safety. 
The criterion in this case is that the onboard system should 
have a high probability of false alarm, while the operator 
driver can rectify this situation using a special command 
transmitted to the locomotive by radio. In practice, if this 
principle was not used, driverless systems would stop, for 
instance, because of a plastic bag on the track.

It should be noted that the system includes trackside 
devices that supervise track vacancy in places with poor 
visibility [5]. Information from those trackside systems is 
communicated to the locomotive in real time, which greatly 
improves train safety. Thus, the used model is simplified, but 
it enables an analytical study of the problem. That consti-
tutes the superiority of this approach to the construction of 
the research model as compared to more complex models. 
An interesting feature of the interaction between trackside 
and onboard machine vision assets is that, under the same 
environmental conditions, they can see the same objects 
either in the line of sight, or from different, including inverse, 
observation points.

The existence of objects acquired by two independent 
systems allows using this feature for cross-supervision of 
intelligent equipment, especially for the purpose of devel-
opment of correct solutions by onboard intelligent systems 
that operate in more severe operating conditions (speed of 
movement, visibility limitations, etc.). The object compari-
son output can have the form of a comparison of images 
processed by trackside and onboard cameras represented as 
pre-processed image models, or it can contain an assumed 
inversion of the image of the same object if it is aimed by 
machine vision cameras from opposite points. This prede-
fined feature of the output comparison safety system enables 
an improved independence of information processing. Each 
technical asset, including video cameras, contains elements 
of internal testing as a prerequisite factor when calculating 
their level of safe operation. Given that a comprehensive 
testing of an intelligent system with a neural component is a 
difficult matter, self-diagnosis using predefined observation 
objects should be employed. For instance, near the railway 
tracks, within the area covered by machine vision cameras 
or lidars, there are traffic lights, control cabinets, power and 
communication masts that are clearly associated with the 
linear coordinates, moreover if the locomotive uses a 3D 
map of the infrastructure assets.

Thus, the acquisition of such assets actually allows testing 
onboard cameras and sensors taking into account the param-
eters of detection distance and type of asset identification. If 
the rate of acquisition of such objects is high enough, then, 
for the distance of the locomotive’s movement between these 
points, the probability of no failure or distortion of the infor-
mation processing algorithm onboard can be calculated. The 
advantage of such method is the completeness of information 
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processing, when, along the internal hardware testing, the 
required level of system safety can be achieved. The system 
itself in this case is a “black box”, but with absolutely known 
outputs within an absolutely known space coordinate.

2. Conceptual safety model 
of an automatic train operation system

An automatic train operation system includes the follow-
ing key facilities:

• onboard train control and protection equipment;
• supervision centre equipment;
• trackside machine vision facilities;
• onboard machine vision facilities.
The conceptual safety model of an automatic train op-

eration system contains a description of the dependability 
and safety states of the system’s component facilities, their 
interrelations, as well as the effects of adverse weather 
conditions. This model is presented in the form of a system 
safety state graph (Fig. 1).

For the purpose of system safety model construction, the 
following criterion of wrong-side failure is adopted: the 
failure of machine vision facilities and the remote supervi-
sion centre or undetected failure of the locomotive’s control 
and protection system. Criterion of right-side failure: the 
failure of trackside machine vision facilities, remote supervi-
sion centre and adverse weather effects or detected failure 
of the locomotive’s control and protection system.

Fig. 1. State graph of the safety of an automatic train operation 
system 

Graph states:
0 – good state, no adverse weather effects;
1 – detected failure of the locomotive control and protec-

tion system – right-side failure;
2 – failure of remote supervision centre equipment;
3 – failure of trackside machine vision facilities;
4 – failure of onboard machine vision facilities; 
5 – adverse weather effects;
6 – failure of all machine vision facilities and the super-

vision centre – wrong-side failure of the automatic train 
operation system;

7 – undetected failure of the locomotive control and 
protection system – wrong-side failure;

8 – failure of trackside machine vision facilities, supervi-
sion centre and adverse weather effects – right-side failure.

The whole set of system states – according to the state 
graph in Fig. 1 – is divided into the following subsets:

– subset of up states SU={0, 2, 3, 4, 5};
– subset of protective states SP={1, 8};
– subset of hazardous states SH={6, 7};
The up and protective states form the set of good states.
Given below are the model’s good state transitions that 

need clarification: 1‑0, 2‑0, 3‑0, 8‑0, equipment restorations 
after failure; 3‑8, failure of the supervision centre equipment 
on condition of failure of trackside machine vision facilities; 
4‑8, failure of the supervision centre equipment on condition 
of failure of onboard machine vision facilities; 7‑8, failure of 
trackside machine vision facilities on condition of adverse 
weather effects. 

The mathematical description of the model will be 
based on the following considerations. The system is new 
and unique, no statistical information about it is available. 
Therefore, the system’s random values distribution laws are 
not established. Based on the existing experience in railway 
control systems, it can be safely assumed that failures of such 
electronic devices, as the locomotive control and protection 
system, supervision centre equipment and machine vision 
facilities, are exponentially distributed. This assumption 
does not apply to random values of time to device restora-
tion after failures, much less to random adverse weather 
effects. The problem of disturbing effects was theoreti-
cally examined by Schäbe and Viertl in [6]. Those models 
are also applicable to adverse weather effects. In order to 
ensure adequate results, the authors were forced to use a 
complex mathematical description of the random process 
of adverse effects on the locomotive’s control system. The 
above circumstances complicate their practical application 
in mathematical simulation of the safety of the automatic 
train operation system.

In the absence of practical information, it is very difficult 
to predict the quantitative safety indicators of the automatic 
train operation system. In this paper, in the context of great 
uncertainty, we aim to identify the most significant factors 
affecting the system’s safety. The assumption of the simplest 
flows of random events in the automatic train operation 
system fits this purpose. The simplest flows are ordinary, 
stationary and have no aftereffect. Due to the great uncer-
tainty of the initial conditions their application, on the one 
hand, does not favour an accurate prediction of the safety 
characteristics of the system’s behaviour. On the other hand, 
the resulting outputs can be considered as prerequisites guar-
anteed from below (as the worst case) to the construction of a 
safe automatic train operation system through neutralization 
of the most significant identified negative factors. Thus, the 
used model is simplified, but it enables the analysis of the 
problem. That constitutes the advantage of this approach 
over more complex models.
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Based on the above assumptions, let us adopt an expo-
nential distribution of failures Fi(t) and restorations Qi(t) of 
equipment components:

Fi(t) = 1–exp(–λit), i = 1...4; Qi(t) = 1–exp(–μjt),

where λ1 is the failure rate of the locomotive control and 
protection system;

λ2 is the failure rate of the supervision centre equipment;
λ3 is the failure rate of the trackside machine vision 

facilities;
λ4 is the failure rate of the onboard machine vision fa-

cilities;
μ1 is the restoration rate of the locomotive control and 

protection system;
μ2 is the restoration rate of the supervision centre equip-

ment;
μ3 is the restoration rate of the onboard machine vision 

facilities;
μ4 is the restoration rate of the trackside machine vision 

facilities and supervision centre equipment.
It is assumed that a failure of the locomotive control and 

protection system is detected with the probability of correct 
detection α. A possibility of non-detection of a failure of the 
locomotive’s system exists and is .The probability 
of false detection is negligible.

Based on the above assumptions, let us assume that the 
law of distribution of random adverse weather conditions 
has the form of H(t)=1–exp(–γt), where γ is the rate of their 
effect on the safety of the automatic train operation system.

Under the above assumptions, the safety-specific behav-
iour of the automatic train operation system is represented 
by a Markov process.

For that purpose, we find the input parameters of the 
system safety model in the subsets of good (up and protec-
tive) states according to the graph in Fig. 1.

The distribution functions of the unconditional good 
time of the system presented with the state graph in Fig. 1 
are as follows:

; F1(t)=1–exp(–μ1t); 

F2(t)=1–exp(–[λ3+μ2]∙t); F3(t)=1–exp(–[λ2+λ4+μ3]∙t); 

F4(t)=1–exp(–[γ+λ2]∙t);

	 F5(t)=1–exp(–λ4t); F8(t)=1–exp(–μ4t).	 (1)

Hazardous states 6 and 7, as well as the edges that are part 
of those states, are excluded from the mathematical descrip-
tion as the study covers the behaviour of the automatic train 
operation system before it enters hazardous states.

The mathematical expectations of the system’s good 
times are as follows:

; ; 

;

; 

;

	
; .	 (2)

The probability of transitions between states i, j of the 

system is identified using formula , 

where λij is the rate of the system’s transition from state i to 
state j. For example, the rate of transition from initial state 
0 to state 1 (Fig. 1) of detected failure of the locomotive 
control and protection system is λ01=α∙λ1, whereas the rate of 
transition from state 0 to state 7 of the system’s undetected 
failure (hazardous system failure) is calculated as .

Thus,

; ; 

; ; ; 

	 ; ; .	 (3)

3. Results of the analysis of the safety 
indicators of the automatic train 
operation system

Using Shubinsky’s Markovian graph method of calcu-
lating the safety of complex systems [7], such key safety 
indicators of an automatic train operation system as the mean 
time to wrong-side failure ТWS, the probability of wrong-side 
failure GWS(t), wrong-side failure rate λWS can be identified. 

The key safety indicator, mean time to wrong-side failure 
ТWS is identified using method [8] according to formula

	
,	 (4)

where  is the weight of the expansion of the graph 
without the initial node 1 and set of hazardous states 
SWS={6,7} and associated graph edges;  is the weight 
of the expansion of the graph without the set of hazardous 
states and associated graph edges;  is the weight of the 
k-th path from node i to node j;  is the weight of the 
expansion of the graph without the nodes situated on the 
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k-th path and without node j in the set of non-hazardous 
states SNH={0,1,2,3,4,5,8} .

The expansion weights can be defined using Mason’s 
gain formula [8] 

,

where the weights of boundaries are found within the set of 
non-hazardous states (Fig. 1)

C1=p01∙p10; C2=p02∙p20; C3=p03∙p30; C4=p03∙p38∙p80; 
	 C5=p04∙p48∙p80; C6=p05∙p58∙p80.	 (5)

All boundaries intersect, since they have a common 
node 0.

According to the graph in Fig. 1 and substituting expres-
sions (1), (2), (3) into formula (4), we find within the set of 
non-hazardous states SNH={0,1,2,3,4,5,8} 

	
,	(6)

where the expansion weight of the graph without the hazard-

ous states  and the weight of the boundaries 

is calculated using formula (5). 
Since, in actual control systems, between the rates of 

restorations and failures of electronic equipment the cor-
relation is λi<<μi, with an error not exceeding the first 
order of smallness, the explicit expressions of the model’s 
initial parameters can be significantly simplified. It is to be 
taken into account that the recovery rates of such trackside 
electronic assets as the supervision centre and machine vi-
sion facilities, are almost identical and deviations of tens of 
percentage points do not significantly affect the final results 
in the context of the above ratio between the failure and 
restoration rates. Then, μ2=μ4=μ and μ1=μ3=kμ, (0<k≤1), 
where k is the coefficient of logistical delays of restoration 
of onboard assets of the automatic train operation system.

The above changes in the initial parameters apply 
to the distribution functions , 

,  ,  expecta-

tions  and , transition probabilities 

, .

Indeed, according to NPRD-2011 camera sub-assembly 
[9], the failure rate of the machine vision facilities is to be 

 and  for the supervision 
centre. According to EN 50129 [10], the failure rate of the 
locomotive control and protection system must be SIL4, i.e., 

. According to IEC 61508-2 (A4, first line) [12], 
the probability of non-detection of failure is to be less than 

. In most cases, the restoration rate of the electronic 
programmable equipment of the automatic train operation 
system exceeds , which is higher than the failure rate 

by four or more orders of magnitude. This allows – within 
an acceptable margin of error – excluding from the explicit 
expression those terms of the sum that are several orders of 
magnitude smaller than the other terms.

The above considerations allow developing the explicit 
expression (6) of the mean time to wrong-side failure of the 
automatic train operation system to an acceptable applied 
mathematical expression 

,

where

	 	 (7)

Upon transformation of formula (7), we deduce that 
– with an error not exceeding the first order of smallness – 
the mean time to wrong-side failure of the automatic train 
operation system can be represented as

	 ,	 (8)

The limit value of the time to wrong-side failure of an 
automatic train operation system occurs in the absence 
of adverse weather effects ( ) and when compliance 
with IEC 61508-2 [11] ( ) is ensured. By substituting 
these values into formula (8), we deduce the output of the 
mathematical simulation. It indicates that the safety of an 
automatic train operation system primarily depends on the 
dependability of the machine vision facilities, i.e.,

.

If the failure rate values of the trackside and onboard ma-
chine vision facilities are close, this expression modifies into

,

where T is the mean time to failure of the machine vision 
facilities.

As the system’s flow of wrong-side failures is multiply 
rarefied in relation to the right-side failure flow of the initial 
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item that is a simplest one, then, according to [12, 13] a 
multiply rarefied, irregularly simplest failure flow is also a 
simplest one with constant parameter

	
.	 (9)

In the limit, the rate of wrong-side failures of the auto-
matic train operation system tends to

	
,	 (10)

i.e., half of the failure rate of the machine vision facilities.
The probability of wrong-side failure with an error not 

exceeding the first order of smallness is defines as

.

4. Results of the analysis 
of the dependability indicators 
of the automatic train operation system

The dependability model of the automatic train operation 
system is transformed from the conceptual safety model of 
such system (Fig. 1) by eliminating hazardous states and 
associated edges. The state graph of the dependability model 
is shown in Fig. 2.

Fig. 2. State graph of the dependability of an automatic train 
operation system

For the purpose of the system’s dependability analysis, 
let us restrict ourselves to the definition of the mean time 
of it being in the set of up states . This 
indicator is none other than the system’s mean time to right-
side failure. This indicator is to be analysed due to the fact 
that improving safety involves bringing the system into the 
safe (non-operational) state in every alarm case, whenever 
possible. It is therefore important to identify which factors 
affect the dependability of a system with machine vision in 
the course of its design according to this architecture.

Using the graph in Fig. 2 and method [7] we deduce

.

Under the assumptions of Items 2 and 3, this expression 
transforms into

	
.	(11)

As noted above in Item 2, in accordance with NPRD‑2011 
camera sub-assembly [9], the failure rate of the machine 
vision facilities is to be  and that of 
the supervision centre is to be . Therefore, 

 can be assumed without noticeable loss 
of evaluation accuracy. In addition, the machine vision and 
supervision centre equipment overwhelmingly contain elec-
tronic assets whose restoration rate is about the same . 
Therefore, we can assume that  and expression 
(11) modify into

	
.	 (12)

As with the system’s safety assessment, let us assume that 
the limit value of time to right-side failure of the automatic 
train operation system takes place in the absence of adverse 
weather effects ( ). Then, formula (12) will modify into 

.

As noted in Item 2, for the purpose of the problem at hand, 

. Given the above, we deduce the marginal estimate 

of dependability of the automatic train operation system in 
terms of mean time to right-side failure:

	 .	 (13)

Consequently, the dependability of an automatic train 
operation system is defined by the failure rate of the loco-
motive control and protection system (λ1) and the machine 
vision facilities (λ). These components of the automatic train 
operation system must be the focus of attention in the context 
of ensuring an acceptable level of the system’s dependability.

5. Conclusion

The above analysis allows concluding that in order to 
achieve an acceptable level of safety of the automatic train 
operation system, the efforts should focus on the following:

– redundancy of machine vision facilities;
–  ensuring the SIL4 functional safety of onboard and 

trackside machine vision facilities (dual channel and dual 
versioning of software, use of independent channels, etc.);

– regular comparison of the outputs of onboard and track-
side machine vision facilities, redundant output comparison, 
integration of the outputs in motion.

Additionally, it is required to ensure compliance with EN 
50129 in terms of SIL4 functional safety of the locomotive 
control and protection system. Adverse weather effects 
should also be countered by increasing the efficiency of 
machine learning of the machine vision software.
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The study confirmed that the reliability of the locomo-
tive control and protection system has a decisive effect on 
the dependability of the automatic train operation system.
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