
27

Simulation of railway marshalling yards using the methods 
of the queueing theory
Maksim L. Zharkov1*, Mikhail M. Pavidis2

1Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences, 
Irkutsk, Russian Federation, 2Irkutsk State Transport University, Irkutsk, Russian Federation
*zharkm@mail.ru

Abstract. Aim. The paper primarily aims to simulate the operation of railway transportation 
systems using the queueing theory with the case study of marshalling yards. The goals also 
include the development of the methods and tools of mathematical simulation and queue-
ing theory. Methods. One of the pressing matters of modern science is the development of 
methods of mathematical simulation of transportation systems for the purpose of analysing 
the efficiency, stability and dependability of their operation while taking into account random 
factors. Research has shown that the use of the most mature class of such models, the single-
phase Markovian queueing systems, does not enable an adequate description of transportation 
facilities and systems, particularly in railway transportation. For that reason, this paper suggests 
more complex mathematical models in the form of queueing networks, i.e., multiple intercon-
nected queueing systems, where arrivals are serviced. The graph of a queueing network does 
not have to be connected and circuit-free (a tree), which allows simulating transportation sys-
tems with random structures that are specified in table form as a so-called “routing matrix”. 
We suggest using the BMAP model for the purpose of describing incoming traffic flows. The 
Branch Markovian Arrival Process is a Poisson process with batch arrivals. It allows combining 
several different arrivals into a single structure, which, in turn, significantly increases the simu-
lation adequacy. The complex structure of the designed model does not allow studying it ana-
lytically. Therefore, based on the mathematical description, a simulation model was developed 
and implemented in the form of software. Results. The developed models and algorithms were 
evaluated using the case study of the largest Russian marshalling yard. A computational ex-
periment was performed and produced substantial recommendations. Another important result 
of the research is that significant progress was made in the development of a single method of 
mathematical and computer simulation of transportation hubs based on the queueing theory. 
That is the strategic goal of the conducted research that aims to improve the accuracy and 
adequacy of simulation compared to the known methods, as well as should allow extending 
the capabilities and applicability of the model-based approach. Conclusions. The proposed 
model-based approach proved to be a rather efficient tool that allows studying the operation 
of railway marshalling yards under various parameters of arrivals and different capacity of the 
yards. It is unlikely to completely replace the conventional methods of researching the opera-
tion of railway stations based on detailed descriptions. However, the study shows that it is quite 
usable as a primary analysis tool that does not require significant efforts and detailed statistics.
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Introduction

In recent years, the application of the queueing theory 
[1] for simulating transportation systems of various levels 
became an important and relevant area of research, as it 
allows assessing the efficiency, stability and operational 
dependability of transportation while taking into account 
random factors. At the same time, the conventional toolkit 
of single-phase Markovian queueing systems (QSs) 
proved to be unsatisfactory, as: a) with a few exceptions, 
in transportation systems, service is carried out in several 
stages (phases); b) incoming vehicles cannot be consid-
ered as individual arrivals, as they may have a complex 
structure and differ in terms of capacity. For instance, such 
are the railway trains arriving to a freight or marshalling 
station (MS). The number of cars in a train may differ; 
while their types are also typically different [2]. Thus, 
a more complex simulation approach is required that 
uses non-Markovian and/or multi-phase QSs, as well as 
queueing networks (QNs). At the same time, since such 
mathematical objects are difficult to analyse, algorithmic 
and software tools need to be developed that would enable 
computer simulation.

Source overview

The applicability of two-phase QSs for railway station 
simulation was mentioned as early as in [2], yet at that 
time no systematic studies were carried out in this area. 
The reason probably consisted in the insufficiently mature 
mathematics. In the 21-st century, the situation changed. 
Thus, the Irkutsk School lead by Academy Member I.V. 
Bychkov and RAS Prof. A.L. Kazakov, to which the au-
thors belong, for more than 10 years has been developing 
[3] an area of research associated with the application of 
multi-phase QSs as a model for processing the arrivals to 
transportation nodes. The nature of the latter may vary 
greatly from a metropolitan transport hub [4] to a railway 
freight station [3]. Similar research is also conducted 
abroad [5-7]. In [5], the queueing theory (QT) is used for 
identifying the capacity of railway lines, in [6], it is used 
for the mathematical description of the operation of sta-
tions and infrastructure facilities, in [7], it helps simulate 
railway node operations. However, the QT is much more 
often applied to the information and telecommunications 
technologies. 

There are a large number of schools of thought and 
groups of researchers involved in this area of research. 
Let us mention three of them, who, in the authors’ opinion, 
occupy leading positions in all of the ex-Soviet countries: 
the Moscow school lead by Prof. V.V. Rykov (see, for 
example, [8-10]), the Tomsk school lead by Prof. A.A. 
Nazarov (see, for example, [11-13]) and the Belarusian 
school lead by Prof. A.N. Dudin (see, for example, [14-
16]). Naturally, the list can be continued, yet this paper 
does not aim and cannot make a comprehensive review 
of the research findings in the field of QT application 

for the purpose of simulating information systems and 
technologies.

Going back to the activities of the Irkutsk school, we 
should note that, as the simulation results show, the common 
features inherent to all transportation systems in this case 
prevail over the various differences and allow examining 
them together. Although, of course, any simulation approach 
requires an adaptation to the object of research, which al-
lows taking into account the structure and directions of the 
internal traffic flows.

The incoming traffic flows [17] deserve a separate 
discussion. As a model that allows capturing their com-
plex and heterogeneous structure, we propose using the 
BMAP (Branch Markovian Arrival Process) that enables 
an integration of a number of different arrivals [14]. Es-
sentially, this is a generalized case of the Poisson stream 
with grouped arrivals. This model was first suggested by 
the Italian mathematician D. Lucantoni back in 1991 [18], 
yet until now it has only been used for information system 
simulation [16].

Based on three-phase QSs, the authors, along with the 
above-mentioned transport hubs (in Moscow and Ekater-
inburg) and freight stations [3], constructed mathematical 
models of MS operations [19-21]. The results were tested 
with specific transportation facilities both in Russia and 
abroad, and attracted the interest of transportation ex-
perts. However, the proposed approach has also shown 
a weakness that is due to the fact that the apparatus of 
a multi-phase QS is only able to describe linearly struc-
tured systems. They do not support the organization of 
loop motion of arrivals, which, in particular, is typical 
for some MSs.

Methods

For the purpose of solving the above problems and 
extending the capabilities of the simulation approach, we 
propose using a new class of objects, the queueing networks 
[21, 22]. A QN is understood as a set of interconnected 
QSs within which arrivals circulate (are serviced) [22, 23]. 
Unlike in the multi-phase QSs, a QN graph does not have 
to be connected and circuit-free (a tree), which allows a 
much more flexible simulation of structurally complex 
transportation systems that are defined by a “routing ma-
trix”. Unfortunately, in this case, the functional extension 
of the simulation apparatus has a downside. The object of 
research becomes fundamentally more complex. If with 
the multi-phase QSs, analytical results can sometimes be 
obtained, for QNs, only a numerical study is available us-
ing single toss-based simulation methods [24] (the Monte 
Carlo methods).

This paper is a follow-up to [21]. Based on the previ-
ously proposed concept of railway transportation system 
simulation, the authors suggest a method of QN-based MS 
simulation, thus developing upon the previously obtained 
results in the QS-based simulation of the above transporta-
tion facilities [19]. In particular, we have developed the 
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appropriate numerical algorithms that are implemented as 
software that allows researching the properties and evalu-
ating the parameters of multi-phase systems and queueing 
networks by means of specially organized computer experi-
ments based on methods of statistical simulation. For the 
purpose of testing the proposed approach, a model station 
is examined. A computational experiment was carried out, 
conclusions were made regarding the specificity of the sta-
tion’s operation.

Mathematical model

As it is known, a marshalling system is a complex 
structure. It is designed for mass breaking-up of freight 
trains into individual groups of cars, their handling and 
accumulation with subsequent making of new trains out 
of them. The MSs perform standard operations and consist 
of similar elements. Let us identify the most important of 
them that will be taken into account in the mathematical 
model. Standard MS perform the following actions: accept-
ance of trains into the receiving yard (RY) and uncoupling 
of the locomotive; breaking-up of train on the hump; 
accumulation of cars in the marshalling yard (MY) in ac-
cordance with the train make-up plan; delivery of a train 
into the departure yard (DY), coupling of the locomotive 
and departure of the made train from the system. In each 
yard and at the hump there are service facilities of different 
capacities. The incoming train flow includes transit, local 
and other categories of trains, whose parameters may vary 
greatly. The trains arrive from several directions (two or 
more). An incoming train should be regarded as a group 
of arrivals, as cars are serviced independently from each 
other and occupy certain positions on the tracks of the 
yards. Therefore, the total incoming train flow consists 
of at least four sub-flows, each of which is a group of ar-
rivals. Passenger trains usually bypass MYs and are not 
taken into account.

A significant part of the incoming train flow is tran-
sit trains that travel across the territory of Russia. This 
group is significantly affected by random factors due 
to the very long travel distances, therefore the traffic 
management system cannot effectively schedule all 
categories of trains on an individual railway line. As 
a consequence, trains significantly deviate from the 
schedule [25]. Therefore, it can be assumed that the 
arrival of trains is a random value.

The mathematical model of an MS is constructed in 
two stages. At the first stage, the incoming arrivals are 
described. For that purpose, a BMAP model is used that 
allows aggregating several different arrival flows into a 
single structure. At the second stage, the processing of 
arrivals in the system is described. In order to take into 
account the complex hierarchical structure of the system, 
it is suggested to use a QN.

The BMAP arrival (Batch Markovian Arrival Process) 
differs from the simple batch arrival in that: a) the rate of 
batch arrivals λv depends on the state number of the Markov 

control chain vt with continuous time and finite space-state 
{0,1,…,W}; b) the time of Markov chain vt being in state v 
has an exponential distribution with parameter λv; c) after 
the time of the chain’s being in state v has elapsed, it, with 
a given probability pk(v,v’), will change into a different state 
v’; a batch of size k ≥ 0 is generated in the process; d) tran-
sition probabilities pk(v,v’) comply with the normalization 

requirement  The transition rates of 
the Markov chain are conveniently stored in matrices

  (1)

A QN is the sum of the finite number S of QSs (herein-
after referred to as nodes), in which arrivals are transferred 
from one node to another in accordance with the routing 
matrix P [22, 23]. Let us accept that arrivals are received 
into a QN from an external source. If it is accepted as an 
additional node with index 0, the route of an arrival is 
defined by the stochastic matrix  of size (S+ 1) × 
(S+ 1). Its elements are Pij, the probabilities of the arrival 
moving from node i to node j ( ), P0j and Pj0, are, 
respectively, the probability of an arrival into the j-th node 
from the source and the probability of an arrival leaving the 
network after being serviced in j-th node . Obvi-

ously,  [22, 23].

Marshalling yard simulation

Let us examine a model marshalling station (MMS). 
Its characteristics correspond to the Ekaterinburg-Sortiro-
vochny (E-S) station of the Sverdlovsk Railway, the largest 
MS in Russia. E-S is a two-system MS with a serial yard 
arrangement that handles trains from five lines: 1) Tagil, 
2) Kungur, 3) Kazan, from the stations, 4) Ekaterinburg-
Tovarny and 5) Ekaterinburg-Passazhirsky. The down 
system serves lines 4) and 5), the up system serves lines 
1), 2), 3). The two systems are almost identical in terms 
of the performed operations. The up system is currently 
undergoing an upgrade and we are unaware of its perfor-
mance parameters. Therefore, the MMS uses the up system 
numbers (see Fig. 1): the RY includes 11 specialized tracks 
for receiving freight trains with a total capacity of 716 
conventional cars (conv. cars) serviced by two humping 
engines that move trains to the hump along two tracks with 
a total capacity of about 100 conv. cars; the hump has a 
large capacity and can handle up to 5500 conv. cars per day; 
the MY has 35 tracks with the total capacity of 2535 conv. 
cars, train formation is ensured by three engines that move 
trains to the DY; it has 15 tracks with the total capacity 
of 980 conv. cars, trains depart from it along three lines. 
The tracks in the yards differ in length, the longest being 
able to accommodate over 80 conv. cars. E-S accepts a car 
flow that includes three categories of trains: a) transit with 
rehandling; b) transit without rehandling; c) local. The a) 
and c) trains arrive to the receiving yard and undergo the 
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rest of the service. The b) trains are serviced in the RY or 
DY, then leave the system.

While preparing paper [25], we collected statistical 
data on trains operating on the Sverdlovsk Railway, in 
particular, freight trains: actual and scheduled times 
of arrival at station, number of cars in trains and their 
numbers. They might be partially obsolete, but we did 
not manage to obtain more recent data, therefore further 
station simulation will be based on the available infor-
mation. They show that in a half of the cases, schedule 
violations by freight trains exceed 30 minutes and more 
than two hours in 28% of cases. Consequently, the time 
between the arrival of trains to the station can be taken 
as a random value. The number of cars in the transit and 
most local freight trains follows a binomial distribution 
B(80, 0.9). Their average number is 70, the maximum 
number is 80 for all categories.

In the MY, the hump is considered to be the primary 
facility that defines the system’s performance. Its capacity 
defines the size of the car stream the station can handle. 
We were unable to obtain the statistics of the incoming 
train traffic, so we shall calculate the number of the 
trains arriving for breaking-up in such a way as to make 
the hump loading 70% of the maximum possible. This 
value corresponds to the average planned loading for 

such facilities. Then, the system is to accept 3850 cars 
or 55 trains per day. We shall take the number of trains 
without breaking-up to be one quarter of the number of 
those broken-up, i.e., 14 per day. We deduce that the MMS 
accepts 69 freight trains from two lines per day, i.e., 35 
trains from line 4) and 34 from line 5). In the model, we 
divide the trains depending on the handling procedure at 
the station, i.e., with breaking-up (trains A) and with no 
breaking-up (trains B), and the line. Thus, the incoming 
car flow will consist of four sub-flow groups. We will 
use a BMAP flow model for the purpose of mathematical 
description of such car flow. It will include 81 4 × 4 D k 
matrices, . Their elements are calculated using 
formulas (1), where λ0 = λ1= λ2= λ3 = λ 69 / 24 = 2.875, 
p0= 28 / 69 = 0.41, p2= 27 / 69 = 0.39, p1 = p3 = 7 / 69 = 
0.1, , f (k) is the 
probability of the arrival of a group of cars of size k that 
follows the law B(80, 0.9).

The MMS model in the form of a QN is as follows. 
The system has four service nodes: 1) in the RY, the two 
shunting engines are the channels, the yard tracks are the 
queue, then Node 1 is a QS with two channels and a queue 
with 716 positions; 2) at the hump, one hump track and 
the shunting device are one channel, the second track is 
the queue, then Node 2 is a QS with one channel and a 

Fig. 1. Down system of the E-S marshalling station

Table 1. Parameters of the channel operation in the MMY subsystems

Node 1 Node 2 Node 3 Node 4
F N(20, 2) N(20, 3) N(40, 5) N(40, 3)
X B(80, 0.9) B(80, 0.9) B(80, 0.9) B(80, 0.9)
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queue with 100 positions; 3) in the MY, the three engines 
are the channels, the yard tracks are the queue, then Node 
3 is a three-channel QS with a queue with 2535 positions; 
4) in the DY, the three departure tracks are the channels 
(three lines), the yard tracks are the queue, then Node 4 is 
a three-channel QS with 980 positions. The service time in 
the node channels is taken as a random normally distributed 
value. The choice is due to the fact that the station staff 
strive to bring the duration of technical operations closer 
to the standard values. Deviations are due to the effect of 
random factors. An example would be a train that has cars 
with only two or three lines (destination stations). Then, 
it can be broken-up on the hump in 12 minutes instead 
of the standard 20. The MMS operation parameters are 
presented in Table 1.

The channel performance parameters (see Table 1) are 
defined based on the standard MY operation process taking 

into account the specificity of E-S. The service time in Node 
1 is taken as the time of humping from the departure park 
and return of the engine. The service time interval is [12.0; 
28.0] minutes, the average time is 20 minutes. The hump 
capacity (Node 2) is 5500 conv. cars per day or 4 conv. cars 
per minute. Let the service time interval be [11.0; 29.0] min-
utes. In Node 3 (MY), the service time is taken as the time of 
engine coupling to the train, completion of train formation 
and its relocation to RY, as well as the return of the engine 
to the MY. The service time interval is [25.0; 55.0] minutes, 
the average time is 40 minutes. In the DY (Node 4) we take 
into account the time of engine coupling to the train, short 
brake testing and the train’s departure from the system. Let 
the average service time be 40 minutes and the interval be 
[31.0; 49.0] minutes. 

Trains A and B arrive into the system. The former enter 
Node 1 and proceed along the entire system. The latter are 

Fig. 2. QN diagram

Table 2. Results of experiment 1

Received Lost Tsyst (m) PG PR

Groups of arrivals 2431.80 0
161.76 0 0

Arrivals 175199.20 0
K l tph (m) tlock (m) Plock

Node 1 1.00 41.46 35.68 2897.00 0.05
Node 2 0.74 24.77 32.61 0.00 0.00
Node 3 1.43 0.00 42.43 0.00 0.00
Node 4 1.59 26.55 51.05 - -

Table 3. Results of experiment 2

Received Lost Tsyst (m) PG PR

Groups of arrivals 2903.50 0
166.13 0 0

Arrivals 209049.50 0
K l tph (m) tlock (m) Plock

Node 1 1.23 61.10 39.20 4681.25 0.08
Node 2 0.83 32.65 34.48 0.00 0.00
Node 3 1.60 0.00 42.44 0.00 0.00
Node 4 1.79 26.64 50.02 - -
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received in Node 1 or Node 4, are serviced and leave the 
system. We use a routing matrix to account for different 
train service procedures. Let us assume that trains B may 
be admitted to Node 1 or Node 4 with an equal probability 
of pb = 0.5. Then, trains from the total incoming flow arrive 
at Node 4 with the probability of p0;4 = (2 ∙ 7 / 69)pb = 0.1, 
and at Node 1 with the probability of p0;1 = 1 – p0;4 = 0.9. 
After servicing in Node 1, trains B leave the system with 
the probability of p1;0 = 7 / 62 = 0.11. Trains A go to Node 
2 with the probability of p1;2 = 1 – p1;0 = 0.89, then proceed 
across Nodes 3 and 4. In QT terms, the MMY model will 
be of the form of QN with routing matrix P formed by 
the above probabilities and the following nodes: 0 is the 
source of the incoming flow; 1 is BMAP / GB/2 /716; 2 is 
* / GB / 1 / 100; 3 is * / GB / 3 / 2535; 4 is * / GB / 3 / 980, 
where B is the binomial distribution, G is the random law 
of service time distribution. The diagram of the above QN 
is shown in Fig. 2.

Let us study the obtained QN numerically using the 
simulation model [24]. The sought characteristics, the 
performance indicators, are [1, 22, 23]: PR and PG are the 
probabilities of handling an application and a group of ap-
plications, Tsyst is the application’s average system time, l is 
the average queue length, K is the average number of busy 
channels, tph is an application’s average time in the node, tlock 
is the total blocking time of all of a node’s channels, Plock 
is the probability of blocking of a single channel of a node.

Computational experiment. Tables 2-4 below show 
the results of scenario-based simulation of the operation of 
the above QN (see Fig. 2) under various parameters of the 
incoming car flow. Each table shows the average results of 
10 program starts. The simulation time is five weeks for all 
experiments, the minimal time required for the simulation 
model to calculate the stationary QN characteristics. The 
primary indicator of the fact the QN is successfully handling 
the load is PR = 0, which, for large industrial and transpor-
tation systems means the absence of the risk of accidents. 
Thus, in particular, this indicates that the station handles all 
trains and the operation is fault-free.

Experiment 1. Table 2 shows simulation results for the 
case of car flow λ = 4 per hour. 

Experiment 2. Table 3 shows the simulation results for 
the case of total flow of 5880 cars or almost 84 trains per 
day, of which 17 do not require handling (λ = 3.5).

Experiment 3. Table 4 shows simulation results for the 
case of arrival rate λ = 4 per hour.

Discussion of the simulation results

Out of the results of Experiment 1, it can be seen that the 
average system dwell time of an arrival (car) is 2.7 hours. 
The probability of failure is zero, i.e., the car flow is accepted 
to the station continuously, which is an important indicator 
of the dependability of railway transportation. Thus, the 
MMY successfully handles the car flow; a dependable and 
reliable station operation is ensured.

Experiment 2. Node 1 is the busiest as the average time of 
channel blocking is 2.2 hours a day, which is not critical, yet 
it affects the station’s operation. In such situation, the traffic 
controllers arrange freight trains at adjacent railway stations, 
where they await the release of tracks in the receiving yard. 
The marshalling station operates normally and handles the 
load, however, due to longer blocking of Node 1 channels, 
the goods delivery time increases, while the stability of the 
transportation system is not fully ensured.

Experiment 3. The results of the simulation show that the 
channels of Node 1 are on average blocked for 3.4 hours 
a day, which is critical for the system, since the queue of 
Node 1 overflows and the probability of failure becomes 
non-zero, dependable and reliable operation of MMY is 
not ensured.

Based on the results of all experiments, the following 
general conclusion can be made. The system operates 
normally at maximum rate of incoming train flow of λ = 
3.5 trains per hour. The limit value of a station’s opera-
tion is the rate of incoming train flow of λ = 4 trains per 
hour. The system’s bottleneck is the insufficient capac-
ity of the receiving yard (Node 1). In order to relieve 
the load, all trains should be redirected to Node 4 (DY) 
without handling. Further improvement of the system’s 
performance requires increased hump capacity. However, 
that will require its reconstruction involving substantial 
material costs. 

Conclusion

Summing up the results of the research, we should 
note that, as the authors hope, it is only the first major 
step on a long way that is to culminate in the creation 

Table 4. Results of experiment 3

Received Lost Tsyst (m) PG PR

Groups of arrivals 3453.50 1.00
178.23 0.0003 0.0003

Arrivals 248605.50 72.82
K l tph (m) tlock (m) Plock

Node 1 1.50 111.15 48.60 7216.50 0.12
Node 2 0.90 42.58 36.96 0.00 0.00
Node 3 1.74 0.00 42.45 0.00 0.00
Node 4 1.97 29.85 50.23 - -



33

Simulation of railway marshalling yards using the methods of the queueing theory

of a single methodology for mathematical and computer 
simulation of transportation hubs using QN. That will 
enable improved accuracy and adequacy of the simu-
lation aimed at assessing the efficiency, stability and 
operational dependability of transportation systems, as 
well as enhancing the model-based approach. Another 
important problem to be solved as part of the transporta-
tion systems simulation is that the software products are 
alienable from the developers. The most natural solution 
would be to use intellectualization tools in the creation 
of an intelligent system for managing the development 
of the region’s transportation and logistics infrastructure 
[26] led by academy member I.V. Bychkov. 

In conclusion, let us note that it is unlikely that the pro-
posed model-based approach will completely replace the 
conventional methods of studying the operation of railway 
stations based on their detailed description. However, as we 
have identified, it can quite be used as a primary analysis 
tool that does not require significant efforts and detailed 
statistics.
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