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Abstract. Aim. In this paper we discuss how systems with Artificial Intelligence (AI) can un-
dergo safety assessment. This is relevant, if AI is used in safety related applications. This holds 
also for railway systems, where AI is expected to take a role in railway automation. Meth-
ods. The focus of this paper is on safety assessment of AI rather than on AI itself. Taking a 
deeper look into AI models, we show that many models of artificial intelligence, in particular 
machine learning, are statistical models. Safety assessment would then have to concentrate 
on the model that is used in AI, besides the normal assessment procedure. Results. Part of 
the budget of dangerous random failures for the relevant safety integrity level needs to be 
used for the probabilistic faulty behavior of the AI system. We demonstrate our thoughts with 
a simple example and propose a research challenge that may be decisive for the use of AI in 
safety-related systems.

Conclusion. The method of safety assessment of systems with AI is presented in this article.
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Introduction 

In the last years, artificial intelligence (AI) has become 
more and more popular and an increasing number of applica-
tions has been reported. These include for example

• Data processing
• Assistance systems 
• Speech recognition
• Face recognition
• Nursing robots
• Autonomous driving systems
• Art etc.
Some of the applications of artificial intelligence may be 

safety relevant. Then, functional safety standards [8, 9. 10] 
should be applied and as a consequence, safety assessment 
is required.

In this paper, we consider safety assessment of systems 
with AI. In the second section we describe, what AI means. 
In the third section we show, how a safety integrity level 
for AI systems can be obtained. In section four we will 
take a deeper view into AI systems – this is necessary to 
understand AI systems and to have an approach to them in 
terms of functional safety. In the fifth section, we describe 
the requirements of the functional safety standards for AI 
systems and a possible assessment procedure. In section six, 
we provide an example, of how safety assessment could be 
carried out on a very simple system. In the last section, we 
present our conclusions. 

What is artificial intelligence?

There exist many publications and many systems are 
named as being artificially intelligent. An overview can be 
found e.g. in Brunette et al [3]. The starting point of AI de-
velopment was the Turing test in the 50s, which is intended 
to check whether a computer exhibits intelligent behavior, 
comparable to that of a human being. Later on, the concept 
of evolutionary programs has been established. The term 

“Artificial Intelligence” has first been used at Dartmouth 
College in 1956. In the meanwhile, different concepts have 
been proposed by many researchers. 

Artificial Intelligence can be defined as intelligence 
demonstrated by machines. Artificial intelligence mimics 
cognitive functions, learning, problem solving etc. 

A question is, whether the following are criteria of intel-
ligence points would be criteria for artificial intelligence 
or not: 

• use of speech,
• consciousness,
• self-awareness.
But while there are truly astounding results, there are 

many articles and presentations about the „deep learning 
hype“, see e.g. Hättasch&Geisler [7], and as far as we know 
there is so far no published complete safety argument for 
any AI application, but there are many research projects on 
safety justifications for AI.

However some approaches have been recently made 
from a safety point of view, most notably the draft UL 4600 
standard [15], which demands a safety case approach for au-
tonomous vehicles, that may utilize AI algorithms. However 
also UL 4600 elaborates only on What to argue, but not the 
How. This is clearly described in the preface: “Conformance 
with this standard is not a guarantee of a safe automated 
vehicle.” Its emphasis is rather on “repeatable assessment 
of the thoroughness of a safety case”. UL 4600 is intended 
be used as an extension of IEC 61508 [10].

Other standardization committees, e. g. the German DKE, 
focus on a process and lifecycle oriented approach. Putzer 
[13] propagates a λAI, a measure similar to a hazard rate in 
functional safety, but gives no concise definition. 

Does AI need a SIL? 

In this section we will discuss, whether we would need 
a safety integrity level for artificial intelligence and if yes, 
how it should be determined.

Figure 1 – E/E/PE Control system

Figure 2 – Arbitrary control system (black box)
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The concept of Safety Integrity Level (SIL) is used in 
many standards for functional safety. The mother standard 
is the well-known IEC 61508. The reader may be referred 
to Schäbe [14] for the determination of SILs.

The following figure 1 shows the situation with a con-
ventional electric, electronic, programmable electronic 
system (E/E/PE system). Here, we have an equipment 
under control, information form sensors that enter the 
control system and actors operated by the control sys-
tem. Depending on the consequences of faulty behavior 
of the control system, the latter gets a safety integrity 
level (SIL).

Now, it does not matter what type of control system we 
have. For the hazard analysis and the determination of the 
SIL it is considered as a black box anyway. This is depicted 
in figure 2.

Now, the black box can also be an AI system. There-
fore, also a safety integrity level can be necessary if the 
AI system fulfills safety relevant tasks and the SIL can be 
determined by the same methods as for an E/E/PE system. 
Only the rules for the assessment of the SIL may be dif-
ferent depending on the type of system that implements 
the black box.

What SIL would we have to expect for different AI ap-
plications? This would mainly depend on the failure conse-
quence and if other risk mitigations are possible:

• Data processing – depends on the results and what is 
done with it

• Assistance systems – normally no SIL if a human can 
always override the system

• Speech recognition – depends on what is done with the 
result and whether there are safe backups

• Face recognition – depends on what is done with the 
result, i.e. which functions are activated

• Nursing robots – giving medicine, carrying patients, so 
surely a SIL would be required

• Autonomous driving systems – can lead to accidents, 
so a SIL would be required

In any case, a hazard and risk analysis needs to be carried 
out to determine the SIL – or the fact that it is not necessary 

to determine one. The relevant functional safety standard 
has to be applied.

Looking inside AI 

AI architecture

Figure 3 shows a very simple architecture of an AI system. 
The architecture has been inspired by Wang [16] but does 
not resemble it. 

Inside the AI system is the model, the most important fea-
ture. This model is flexible and needs to undergo a teach-in. 
This is done on the basis of some data. These data must be 
representative, i.e. they must be adequate to resemble future 
situations. It is necessary to avoid situations as mentioned 
e.g. reported by Corni [5], where an AI system shows rac-
ism, which was imported via a non-representative set of 
data for learning.

After teach-in, parameters are set in the model. This is 
later used to generate reactions to request data and activate 
actors in order to control the equipment under control. Pos-
sibly, teach-in can continue even after the system has been 
put into exploitation.

Then it is important to
• Check the model,
• Check the representativeness of the data,
• Verify the data – model reaction – action chain, and to
• Carry out an overall validation.
Verification of the model includes the use of test data 

– they must also be representative and cannot be the same 
as the data used for teach-in. In the following subsections, 
we will take a deeper look into several types of AI systems. 
This will refine the model part of the architecture described 
in figure 3.

Looking at AI by Similarity Analysis

As explained by figure 3 most AI algorithms rely on or 
are at least similar to statistics. So as a first approach to 
explore the requirements for use of AI in safety applica-

Figure 3 – Architecture of an AI system
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tions we could what a statistical procedure would have to 
fulfill if we wanted to use it for safety applications. This 
can also be interpreted as a kind of similarity analysis. What 
can we learn from statistical procedures? What would be 
the consequences if AI algorithms e. g. machine learning 
could just be interpreted as statistical data fitting – but 
with very complex algorithms and big data? Note that this 
consideration is a simplified one in order to support a basic 
understanding of AI that would allow applying methods 
of safety assessment.

To explain the situation intuitively, let’s use one of the 
simplest statistical models, which every engineer knows 
from school: linear regression i. e. fitting of a (straight) 
line to data. What can we learn in general from it? Note 
that this observation is not new, Pearl and Mackenzie 
[12] already stated that neural networks “…are driven 
by a stream of observations to which they attempt to 
fit a function, in much the same way that a statistician 
tries to fit a line to a collection of points.” But to the 
knowledge of the authors this similarity has not been 
fully exploited yet.

Let us assume that some safety-critical decision would 
depend on the goodness of the fitted curve. A very good 
example what can go wrong has been constructed by Ans-
combe [1]. In his data sets, see figure 4, all relevant statistical 
measures are equal to at least two decimal places, although 
obviously the sets appear very different.

Figure 4 gives some examples of a correct fit (data 
set 1); a data set (2), where obviously the wrong model 
was used; a data set (3), which is influenced by an out-
lier; and data set (4) with a leverage point, which results 
from a completely inadequate experimental design. Even 
from this simple example we can draw some important 
conclusions:

1. The model must be correct – otherwise we will never 
fit the data well (see data set 2), no matter how long we learn 
or how good the data might be.

2. The training data must be representative of the real 
data; particular we must make sure that the sampling is 
adequate (see data set 4)

3. We must have means to detect outliers (and even to 
remove them, see data set 3) or even Black Swans 

4. We need a measure of goodness of fit (like R2 in 
normal regression). But such a measure and the calculated 
fit depends on the loss function (see data set 1, where the 
usual least squares loss function is assumed like in all other 
fits in figure 4)

Machine Learning as a classification 
problem 

Machine learning (ML) is a particularly successful variant 
of AI. Statistically it can also be interpreted as a classifica-
tion problem, which provides another look on the problem. 
So, all our findings in the preceding section directly hold 
for ML. Basically, many ML algorithms solve classifica-
tion problems, similar to cluster or discrimination analysis 
in statistics. We have (at least) two classes of (big) data in 
a high dimensional space., see figure 5 for an illustrative 
two-dimensional example. In other cases, ML algorithms 
solve regression problems or reduce dimensionality, later 
a statistical approach could be applied to understand those 
models. In the remainder of this section, we restrict ourselves 
to classification problems.

An optimal discrimination function would separate the 
classes completely for the training set. We may assume that 
a true (“correct”) discrimination function exists (the red 
curve in figure 5), but in practice ML algorithms calculate 

Figure 4 – Examples of what can be learned from linear regression 
© User: Schutz / Wikimedia Commons / CC-BY-SA-3.0 
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an approximation of the true function. However, there re-
mains some space between the two classes and there exists 
no unique solution for the problem.

Artificial Neuronal Networks and the 
General approximation Theorem

The most polular and recently most successful variant of 
ML algorithms are Artificial Neural Networks (ANN) [4, 
11]. Each ANN has at least two layers that are connected by 
weights. A simple example is shown in figure 6. 

A mathematical model of this simple ANN can be de-
scribed as follows: the input data vector x is transformed 
by weights v and w, offsets b and an output function j 
(non-constant, bounded and continuous) to two output 
classes

	 	 (1)

The optimal weights for a particular cost function C, 
which is defined in addition to (1), are found iteratively based 
on the training data and a numerical algorithm.

More complex ANN add additional hidden layers (often 
called deep networks), but the mathematical description and 
solution is similar.

From our general discussion above immediately the fol-
lowing questions arise:

1. Is F the correct function to discriminate the data well? 
2. Does it approximate the true function well? 
3. Or do we need more layers or more complex functions?
4. How can we make sure that the training data are rep-

resentative?

5. How can we detect outliers?
6. How can we justify the cost function C?
If we cannot answer the questions sufficiently, we might 

have systematic flaws in the model!
Fortunately, for question 1 there exist a variety of so called 

“universal approximation theorems”, that show convergence 

Figure 5 – Discrimination of two data sets in classification
© User: Alisneaky/ Wikimedia Commons / CC-BY-SA-3.0

Figure 6 – artificial neural network with two layers
© User: Glosser.ca / Wikimedia Commons / CC-BY-SA-3.0
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of F to f, the true function, provided φ is a bounded and 
continuous function and if f is continuous, see Cybenko [6]. 
Note that this is convergence as in the calculus definition, 
not some stochastic convergence.

This is quite a strong result, but it has implications related 
to the other questions. The most limiting assumption is the 
continuity of the true function f, which means that our prob-
lem space must be separable by a continuous function. And 
also φ must be continuous, so we can’t use jump functions 
for the decision making.

At first glance this result is surprising because it already 
holds for ANN with a single hidden layer but on second 
thought the results are quite obvious and a have a simple 
explanation:

1)  F is a kind of general linear approximation to f. 
But it is obvious that such linear approximation for a 
continuous function f should be possible if the number 
of nodes N is sufficiently large. Also, in the classification 
example in figure 5 f could be approximated by stepwise 
linear functions.

2) Also, deep ANN with several hidden layers could 
be represented by single layer (with large N). Just think 
that the true function f would be the function represented 
by the multi-layer network, which by the approximation 
theorem again could be approximated by a single layer 
function F.

For dependable applications, the requirements to answer 
question 1 could be:

1) Choose a single-layer ANN with sufficiently large N. 
N could be determined by a convergence criterion as known 
from calculus.

2) The more difficult assumption that needs to be justified 
would be that the data sets can be separated by a continu-
ous function. This argument would depend on the type of 
application data and can hardly be general.

3) Choose an appropriate cost function C (with justifica-
tion).

Data and Goodness of fit

The second question deals with the adequacy of the train-
ing data and also with the associated stopping rule: when 
is training finished? 

Representative data means that teach-in must occur in a 
typical environment for this type of system and the environ-
ment must be such that the influences are typical for this type 
of use, including all the changes in the environment. So, all 
replications of the system (after teach-in) must be operated 
at least in similar environments and all replications of the 
system must be similar, compare Braband et al. [2]. Here we 
must in particular also take care of the Black Swan problem 
(related to question 3). Possibly we have to introduce safety-
related application rules for the environment in which the 
system will operate.

Another question is goodness of fit. How do we measure 
goodness-of-fit for the training data? Can we accept failure 
in training data? Generally, any misclassification in training 

data could lead to a high proportion of classification fail-
ure in practice. Take as an example the black point on the 
boundary line in figure 5. Assume now that both data sets 
are separated by the true (red) function f in figure 5. If this 
particular point is mis-classified, a whole set of points close 
to the black point would be misclassified, too, resulting in 
a high failure rate. On the other hand this point might also 
be an outlier.

This means
1.  Either we have 100% correct classification in the 

training data, or
2. We can calculate the error probability well
The problem is that we cannot simply count classification 

errors. We have to weight them according to their impor-
tance, which may be difficult in high-dimensional spaces 
and big data.

Furthermore, teach-in has clearly statistical aspects. This 
means:

• Confidence bounds need to be taken into account.
• Derived parameters are random values containing 

some spread
• The subsequent decisions of the AI will also be random, 

with some errors:
- First kind error: wrong decision, although the input data 

are in the „right“ domain
- Second kind error: input data are in the „wrong domain“, 

but decision is „right“.
As a consequence, the AI will have a failure probabil-

ity. This must be taken into account, assigning part of the 
budget of the rate of dangerous failures to the AI (here: the 
algorithm).

The position of functional safety 
standards on AI and a possible 
assessment procedure

If AI is used for safety relevant applications, the 
standards on functional safety would come into play. 
We consult the basic standard, IEC 61508 [10]. Require-
ments of the functional safety standards – example: 
IEC 61508. The main information is contained in IEC 
61508-3, table A.2:

no. 5 – Artificial intelligence / fault correction SIL 2 – SIL 
4: NR (see C.3.12)

no. 6 – Dynamic reconfiguration SIL 2 – SIL 4: NR 
(see C3.13)

In part IEC 61508-7 an explanation can be found, what 
ai means in the terms of the standard

C.3.9 Artificial intelligence
Fault forecasting (calculating trends), fault correction, 

maintenance and supervisory actions may be supported 
by artificial intelligence (AI) based systems in a very 
efficient way in diverse channels of a system, since the 
rules might be derived directly from the specifications 
and checked against these. Certain common faults which 
are introduced into specifications, by implicitly already 
having some design and implementation rules in mind, 
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may be avoided effectively by this approach, especially 
when applying a combination of models and methods 
in a functional or descriptive manner. The methods are 
selected in such a way that faults may be corrected, and 
the effects of failures be minimised, in order to meet the 
desired safety integrity.

In fact, the IEC 61508 sees AI as a means for fault cor-
rection and dynamic reconfiguration as a reaction of a fault 
in the control system. Such an application would make the 
control system unpredictable.

How to cope with the IEC 61508 rules against artificial 
intelligence? The statement in the standard is combined 
with a statement about dynamic reconfiguration, which is 
undesired for SIL 2 …SIL 4. If AI is implemented in the 
control system itself, this would not be a reaction on faults 
of the control system, it would be a feature.

The functional safety standard requires a predictable 
system. Predictable means that measures against system-
atic failures are sufficiently implemented, so that they can 
be neglected. Random failures‘ occurrence is brought to a 
sufficiently low level.

Therefore, AI system‘s behavior must be predictable 
in a statistical sense. Note that this predictive behavior 
here is not a deterministic behavior, but a statistically 
predictable behavior. This means that the AI system will 
contribute to random dangerous failures that would be 
caused by a random behavior of the software itself. This 
is a key difference to normal E/E/PE systems, where soft-
ware is considered deterministic with systematic errors 
only requirements and following the software require-
ments of the functional safety standards would reduce 
them to an acceptable level.

An assessment approach can then be based on the fol-
lowing steps:

• Analyzing the model,
• Taking part of the budget for random failures for the AI 

system since it shows probabilistic behavior,
• Treat the AI system as a normal mathematical model, 

but only with probabilistic behavior.
Then assessment is carried out in the same manner as a 

normal safety assessment with a complicated mathematical 
model. It is not the intention of the author to repeat the pro-
cedures of safety assessment. For details of an assessment 
process see e.g. Wigger [17].

The main part of the assessment is the model check. 
The mathematical model needs to be checked regarding 

the following aspects:
•  correctness of the model according to physical / 

chemical / mathematical and other scientific proven 
theories,

• equivalence to other mathematical models as e.g. of 
brake curves, thermal models etc.

That means, the theory / model must be disclosed to the 
assessor. The models might be of one of the following types, 
see e.g. Wang [16]:

• Neural network,
• Long short-term memory,

• Auto encoder,
• Deep Boltzman machine,
• Generative adversarial network,
• Attention-based LSTM.
The more flexible the model, the more complicated its 

analysis will be. In the next section we provide an example 
on how such a model analysis could be carried out for a 
very simple model.

The great effort for model checking leads to the 
question, whether proven in use approaches could be 
applied. According to Braband et al [2] this would mean 
to accumulated a minimum number of failure free hours 
(here: no dangerous failures) according to the follow-
ing scheme:

• 3·106 failure free hours for SIL 1;
• 3·108 failure free hours for SIL 4.
Practical experience shows that it is hard to accumulate 

such a quantity of failure free hours. As a result, model 
analysis as one of the main parts of safety assessment needs 
to be done.

Academic Example

The following example is provided in order to give a 
general impression, how safety assessment could be carried 
out rather than to provide a model of an AI system. Assume 
a classification system that classifies objects in two catego-
ries: „left“ and „right“ based on one real-valued parameter. 
The parameter is assumed to be normally distributed. Note 
that statistically the model is completely defined by this 
assumption, which would have to be justified in practical 
applications. It can’t be taken for granted, and for this reason 
we label it as an academic example as we assume to know 
the true model.

There are two sub-populations characterized by the fol-
lowing distributions:

• „left“ is characterized by a normal distribution with 
mean mL and spread sL,

• „right“ is characterized by a normal distribution with 
mean mR and spread sR.

First, assume the parameters to be known.
Then the following classification rule is established:
„left“ if X≤z and „right“ if X>z,
where is a „properly“ chosen constant. Now the first kind 

error and the second kind error can be computed

	 a = 1 – Φ(z – mL/σL) first kind error,	 (2)

	 β = Φ(z – mR/σR) second kind error,	 (3)

Φ(z – mL/σL)probability of correct „left“ 
	 classification,	 (4)

1 – Φ(z – mR/σR) probability of correct „right“ 
	 classification,	 (5)

Φ – standard normal integral.
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The first kind error is the probability that an object is 
classified in the sub-population “right” although it belongs 
to “left”. The second kind error is the probability that that 
an object is classified in the sub-population “left” although 
it belongs to “right”. The parameters sR and sL should be 
as small as possible to have small errors.

Now there is one missing point. Parameters mL, mR, sL 
and sR are not known but must be obtained by a statistical 
procedure that means that they must be learned from a 
sample of data.

How does the system learn? The system learns from two 
samples for the both sub-populations:

A „left“ sample XLi, i = 1, nL and a „right“ sample XRi, 
i = 1, …, nR are used for teaching.

From the samples, the unknown parameters can be es-
timated:

	 ;	 (6)

	 ;	 (7)

	 ;	 (8)

	 .	 (9)

The point estimators of statistical characteristics are 
given in italics. The sum runs over the index i for 1 to nL or 
nR, respectively. 

In a next step the confidence limits for the parameters 
have to be used instead of the point estimators given by 
(6) – (9). Confidence limits will be chosen as such that the 
misclassification error becomes small, i.e. upper bounds 
for the sigmas and mL and a lower bound for mR. We use 
single parameter bounds – not combined ones – to simplify 
the computation.

The point estimators (6) – (9) have the following dis-
tributions:

, where  is the dispersion of the “left” 
entire assembly that is chi-squared distributed with nL-1 
degrees of freedom;

, where  is the dispersion of the “right” 
entire assembly that is chi-squared distributed with nR-1 
degrees of freedom;

, where ,  are respectively the mean 
and standard deviations of the “left” entire assembly that has 
a t distribution with nL-1 degrees of freedom;

, where ,  are respectively the 
mean and standard deviations of the “right” entire assembly 
that has a t distribution with nR-1 degrees of freedom.

The least favorable values are:
upper confidence bounds for the standard deviation, i.e.

	 ,	 (10)

	 ,	 (11)

where Chi2(n;1-g) is the quantile of the Chi-squared distri-
bution with 1-g coverage and

the lower confidence bound for mL 

	 	 (12)

and the upper confidence bound for mR

	 ,	 (13)

where t(n; g) is the quantile of the t distribution with n de-
grees of freedom and coverage 1-g.

Inserting the confidence bounds (10) – (13) into the for-
mulae (2) – (5) gives the probabilities of errors.

If misclassification with a type one error is dangerous, (1) 
with (6) and (8) gives the probability of a dangerous failure. 
However, to account for errors coming from the confidence 
intervals, value

a+2g
should be used. The interpretation of g as a probability that 
the true value lies outside the confidence interval is not a 
frequentist one, but a Bayesian using an appropriate prior.

For a SIL 1 system, a probability of failure on demand of 
0.1 must not be exceeded. This value can be seen as a budget:

One might give 0.05 as a maximal value for hardware 
failures and 0.05 for the AI algorithm. The latter can be 
split according to

0.05 = a+2g
e.g. in the form 
a = 0.025, g = 0.0125.
For a SIL 4, IEC 61508 provides a threshold value of 

0.0001 for the probability of failure on demand.
The reader might repeat the calculation. As a further 

exercise, she might consider conditions on m and the Sigma 
values to fulfil the requirements. This simple example shows 
that complicated computations are to be expected. Even 
with this very simple example, we were confronted with 
complex mathematics.

What is now the way out of this complicated situation?
There exist mainly two options:
1. The AI system does not need a SIL since its behavior 

does not have critical consequences (no injuries to persons 
etc.)

2. The AI system is supported by a sufficiently simple 
E/E/PE system, having the necessary SIL, that checks all 
dangerous decisions according to simpler algorithms and 
inhibits dangerous reactions

The options need to be supported by a risk analysis (see 
IEC 61508).

Research Challenge

We admit that the example is quite simple and academic, 
but we believe that we need to understand and solve small 
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problems first before we can approach high-dimensional 
problems.

In order to take a little bit more practical example, 
consider the following problem: You are given a set of n 
two-dimensional points which are classified into two sets 
(like figure 5, but only the points). The model is unknown, 
but you can control the number of points to a certain extent. 
You do not know anything else but that the decision problem 
is safety-related with SIL x. You may choose your favorite 
classification method, e.g. ANN.

Under which assumptions can you provide a safety argu-
ment according to an acknowledged safety standard e. g. IEC 
61508? Can you also provide reasonable guidance how the 
validity of your assumptions may be checked in practice?

This may seem a simple problem, but it has high leverage: 
If we can’t provide a safety argument (under assumptions 
that can reasonably be checked in practice) then (at least 
some classes of) AI algorithms can’t be used for safety-
related applications. But if we can solve the problems under 
certain conditions, we might be able to generalize the ap-
proach to higher dimensions.

Conclusions

In this paper we have described a possible approach to 
safety assessment of AI systems although several questions 
remain open and may only be solved in the context of a 
particular application.

A Safety Integrity Level can be determined as for a normal 
E/E/PE system. This has to be substantiated by a hazard and 
risk analysis. This is also necessary, if the system does not 
require a SIL.

AI can be easily used in situations, where no critical 
consequences occur, which has to be supported by a risk 
analysis. Then, no safety integrity level requirements need 
to be implemented in the system and safety assessment is 
not necessary.

We have proposed an approach to analyze the model. The 
analysis to be carried out depends very much on the type of 
model. An assessment requires always an in-depth model 
analysis of the model of AI that means AI as such cannot be 
analyzed since it covers a lot of different approaches. The 
more flexible the model, the more complicated the analysis 
has to be. For use in critical systems it seems a useful ap-
proach is to restrict the type of models in order to simplify 
the design and the assessment of the AI system.

Pearl and Mackenzie [12] have approached the problem 
from a similar angle and have concluded that causality 
needs to be introduced into AI, before we can rely on its 
conclusions. One of their conclusions is that it is necessary 
to “formulate a model of the process that generates the data, 
or at least some aspects of that process”.

We have provided an academic example in order to 
show how one would have to proceed for this specific type 
of model.

Finally, we have introduced a research challenge whose 
solution might be decisive for the use of AI algorithms for 

safety-related applications. The challenge is to formulate a 
model of the data generation process that allows a safety 
analysis and that can be justified to hold in practical ap-
plications.

In order to use AI systems without the burden of an ex-
tensive safety assessment there are only two possibilities: 
either have an AI system that is not safety relevant or have 
another safety relevant E/E/PE system that take over full 
responsibility for safety.
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