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Abstract. Aim. Enable prediction and planning for large-scale unprecedented power outages 
of importance for emergency planning and national response actions. Predict outage probabil-
ity, duration and restoration using a theoretical framework that is applicable globally. Methods. 
Data have been collected for power losses and outage duration for a wide range of events 
in Belgium, Canada, Eire, France, Japan, Sweden, New Zealand and USA. A new theory and 
correlation is given for the probability of large regional power losses of up to nearly 50,000 
MW(e) without additional infrastructure or grid damage. For severe and rare events with dam-
age (major floods, fire, ice storms, hurricanes etc.) the outages are longer and the restoration 
probability depends on the degree of difficulty that limits access and restoration. The dynamic 
reliability requirements for emergency back-up power and pumping systems are derived, and 
demonstrated using the flooding of New Orleans by Hurricane Katrina and of the Fukushima 
nuclear reactors by a tsunami. Conclusions. Explicit expressions have been given and vali-
dated for the probability and duration for the full range from “normal” large power losses to 
extended outages due to rare and more severe events with access and repair difficulty.
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1. Introduction: Electric power loss 
and restoration 

Large electric power outages completely upset modern 
industrial and urban complexes. Given power losses do oc-
cur, we need to know the probability of the loss, size and 
duration to plan adequate supply margins, deploy back-up 
generators, undertake emergency response and protect other 
critical infrastructure [1].

This is not a new topic at all, and has been extensively 
studied for setting power delivery performance and reli-
ability standards [2] and coping strategies in national 
emergency plans [3]. But there is a gap in the literature, 
knowledge and data between the daily routine of provid-
ing reliable power delivery and for responding to the 
unexpected extreme losses due to cataclysmic disasters 
and extreme natural hazards. In this paper, we have tried 
to bridge that gap by determining the probabilities for any 
given MW(e) outage and the subsequent chance of restora-
tion, including using emergency back-up systems for both 
everyday and extraordinary events. 

Overall studies of the day-to-day reliability or depend-
ability of the electric grid are the normal business concern 
of owners and operators of the power lines and plants 
and determines how much they are paid. Whole societies 
are concerned about power restoration delays, especially 
due to extensive damage and the societal disruption from 
the impact of rare or record events and natural disasters 
(e.g. hurricanes, typhoons, floods, tsunamis, and ice 
storms). It is such major disasters that are of concern for 
infrastructure fragility, national emergency preparedness 
and management decisions. 

Following all power losses (aka outages or blackouts), 
the affected power companies, emergency management 
organizations and government agencies have deployed 
vast numbers (sometimes many thousands) of staff, repair 
crews, equipment and procedures to address power recovery, 
evacuate people and repair damage. Essentially restoration 
only can proceed “as fast as humanly possible”, limited 
by damage, access and social disruption issues caused by 
flooding, storms, fires, wind, ice and snow [4], and as stated 
“the restoration of the grid is generally the same across all 
hazards” [5].

The probability of any individual loss or outage being 
restored is actually random, and being observed as outcomes 
follows the well-known and established laws of statistical 
physics and mechanics [6,7,8,9]. Our earlier work provided 
an explicit analysis of the probability and timing of power 
restoration for very large outages or power losses at the 
national level [10]. 

The initial loss and subsequent restoration are independ-
ent events, being the initial outage fault or failure followed 
by the repair and recovery process. The dynamic probabil-
ity, P(h)NR, of an outage of any size lasting any duration, 
h, hours before restoration is then simply given by, where 
the conventional reliability is simply the complement, 
R(h) = 1- P(h),

P(h)NR = Probability of initial loss, P(MW loss)i x Prob-
ability of non-restoration, P(NR)h

If emergency power or back-up systems exist or are 
deployed or activated, we can include the dependent prob-
ability for continuing loss of all external and other power 
sources so, 

P(h)ELAP = Probability of initial loss, P(MW loss)i x Prob-
ability of non-restoration of any or all power, P(ELAP)h

Hence there are three distinct probabilities to de-
termine for: (1) the initial event outage size based on 
known or possible power losses for the system; (2) 
the subsequent recovery or non-restoration of power 
by some timescale; and (3) the chance of emergency 
back-up or “black start” systems failing to function and 
restore power by that time. 

To derive these essential elements, the present approach 
combines human learning and mechanical system reliability 
theory, correlated to and validated by extensive power loss 
and restoration data for actual events.

For the initial loss exceedence probability, P(MW loss)i 
, there are outage size data for the entire USA for the pe-
riod 1984-2000, for losses, Q, between 1 to 40,000MW(e) 
[11]. A sample of similar plots by sub-region has also been 
presented and fitted using empirical binomial, Weibull 
and lognormal distributions [12]. These distributions 
are of course heavily weighted by the many “normal” or 
everyday outages, not rare catastrophic events. We also 
need to predict the low probability “tail” of the distri-
bution where such standard statistical methods are not 
applicable, as clearly evident in their Fig.S-28. Murphy 
et al [12] also looked to see if outages were linked, and 
unsurprisingly concluded: “…that the largest correlated 
failure instances were caused by extreme weather”. This 
observation is precisely what we should expect given 
the large geographic scale and impact of natural hazards 
(storms, hurricanes, floods, ice storms and wildfires) on 
power systems and the consequent universal power res-
toration characteristics[4]. Large natural hazard events 
do not respect or recognize human-drawn boundaries or 
arbitrary grid distribution regions, and cause event-related 
damage and destruction over wide swathes.

Other national power loss duration data are derived from 
[13] for large blackouts in France, Sweden and Belgium, 
being for a range of 28,000, 11,400 and 2,400 MW(e) 
initial losses, respectively. The outage durations are well 
correlated by exponential functions derived from learning 
theory [10]. 

For the restoration phase, we had previously collected 
extensive power recovery data for many severe events e.g. 
storms, ice storms, fires, hurricanes, cyclones and floods, 
causing outages lasting a maximum of 800 hours over a 
wide range of urban, regional and international loss scales. 
The extent of the outage is represented by the number 
reported by the power distributors of those connections/
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customers remaining “without power”, so the probability 
of non-restoration is the fraction of the initial outages that 
have not been restored. For all outage events, this electric 
power non-restoration probability, P(NR), is well correlated 
by simple exponential functions, dependent on and grouped 
by the degree of difficulty as characterized by the extent of 
infrastructure damage, social disruption and concomitant 
access issues [4].

We need to design and determine the effectiveness 
of the emergency systems for limiting damage, restor-
ing the infrastructure, and managing consequences For 
actual (not hypothetical) major events, there are key 
performance data available during loss of power from: 
(a) restoration of power in nuclear power plants following 
loss-of-grid connection but without additional damage 
;(b) back-up pumping systems failing to adequately pro-
tect the city of New Orleans from flooding by Hurricane 
Katrina [14]; and (c) the emergency generators and exter-
nal power repair not cooling and preventing the melting 
down of the Fukushima nuclear reactors in Japan after 
an earthquake and tsunami. The data analysis shows the 
characteristic failure rates that underpin the determina-
tion of the probability of extended power loss for these 
diverse major emergency systems [15]. 

We will provide the general expressions for the three 
probabilities based on the facts emerging from the massive 
losses observed in entire human, designed, operated and 
controlled power systems.

2. Methods: Assumptions 
and theoretical development

The first key assumption is that the power losses, out-
ages and 

restorations are indeed random, whatever the cause, but 
all depend on human actions including emergency manage-
ment decisions . Secondly, because humans learn and think, 
a systematic trend exists with increasing experience or risk 
exposure so that, as shown by the data, we should expect 
larger outage events to have lower probability. Thirdly, 
the chance of restoration or recovery of any individual 
initial outage or loss of power depends on the ability and 
experience gained by emergency managers and crews so 
also demonstrates a learning trend. Finally, because the 
probability of any individual outage happening and be-
ing restored is actually random, the observed outcome 
distribution follows the well-known and established laws 
of statistical physics[6,7,8,9].

After any prior or during any present risk exposure or 
accumulated experience, ε, the learning hypothesis theory 
[8] defines the rate of decrease of the observed failure rate, 

λ(ε), as proportional to the rate, . For the 

present case the instantaneous failure rate, λ(ε), is equivalent 
to the observed rate of change of the number of power loss 
outages. Solving, this rate is given by,

 , (1)

Here, λ0 and λm are the initial and smallest attainable 
rates, respectively, and k is the proportionality constant. As 
usual, the prior probability over some prior risk exposure 
interval, ε, is, 

  (2)

To evaluate these rates and probabilities, we adopt the 
simplest approach consistent with the physical situation and 
model the power loss outcomes as emergent events, without 
examining the root cause or systemic origins of each and 
every event, and then test the approximations and results 
against the data.

2.1. Probability of initial power loss 
or blackout size

In the past, we have observed portions of an entire power 
system (a plant, power line, distribution control…) causing 
initial outages that form some known or assumed distribu-
tion of overall loss sizes. The measure of the relative risk 
exposure or loss experience measure is self-evidently actu-
ally directly proportional to the power outage magnitude, 
ε=f(Q), which we can scale relative to the average outage 
magnitude, , so . We may assume for each and 
every different outage, , implying individual outage 
events are independent (which they are in practice); and that 
the outages are usually nearly completely restored, so we 
may take, .

Therefore, from Equations (1) and (2) the probability of 
any initial power loss or outage, becomes simply the intrigu-
ing double exponential,

 P(MW loss)i . (3)

The obvious and sensible limits are: 
(a) small outage or loss 

; 

(b) infinitely large loss 
;

(c) average loss, assuming that k~1,

= 0.74

2.2. Dynamic probability of outage 
duration and restoration

We observe that after the initial loss, power is progres-
sively and eventually restored to every individual customer 
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or connection, where the relevant risk exposure measure is 
now the elapsed outage time, so e ≡h, in hours. So the prob-
ability of any duration of any individual outage of any initial 
size at any elapsed time is then simply given by

 P(h)NR = P(Q)i × P(NR)h. (4)

The data for electric power non-restoration probability, 
P(NR)h, for all outage events are all well correlated by simple 
exponential functions, dependent on and grouped by the 
degree of difficulty as characterized by the extent of infra-
structure damage, social disruption and concomitant access 
issues [4] . The instantaneous probability of non-restoration, 
P(NR)h, of any individual outage in the entire system in any 
interval is obtained by dividing Equation (1) by the total 
possible number requiring restoration, being the initial 
individual outage number count. The general exponential 
form of the instantaneous probability of non-recovery or 
continuing failure then is [6], 

 , (5)

Here, k≡β, and depends on the degree of difficulty for 
storms, fires, floods and hurricanes, and Pm is due to the 
few irrecoverable outages Substituting Equations (3) and 
(5) into (4), and noting Pm<<1, 

 . (6)

A good working approximation is, Pm<<e-βh, 

  (7)

The limits are again: 
(a) small outage or loss, 

(b) infinitely large loss, 

(c) average loss with k~1, 

2.3. Dynamic probability of extended 
outage while deploying emergency 
and “black start” back-up systems 

This is an important and more complicated situation, 
as while overall system restoration is ongoing, emergency 
back-ups are sometimes deployed locally or grid-wide, be-
ing diesel generators, gas turbines or “black start” alternate 
power plants. Hence, the probability of extended power loss 
of initial size, Q, depends on the probability, P(ELAP)h , of 
power not having been already restored by both normal and 
emergency means, so, 

 P(h)ELAP = P(Q)i × P(ELAP)h. (8)

To evaluate, P(ELAP)h, we must combine the non-
restoration probability, P(h)NR, with the on-going failure to 
successfully deploy or actuate any or all back-up emergency 
systems [15,16]. The overall dependent probability, P(ES), 
for any such emergency or back-up system to not be success-
fully deployed or activated is conventionally characterized 
as exponentially dependent on an overall system average 
failure rate, λES [17].The dynamic probability density of 
extended failure or loss of all power, dP(ELAP)h/dh, is then 
the multiplicand of the dynamic probability of the continu-
ing failure of system recovery, P(NR)h, times the probability 

density, , being the changing rate of the 

probability for unsuccessful emergency restoration [15, 16]. 
Over the prior elapsed or available restoration time, h, we 
then have,

Integrating by parts, and since, Pm<<e-βh,

 (9)

The limits are obvious:
(a) great restoration difficulty, β<<λ,  
(b) perfectly reliable backup, λ=0,  
(c) at very long times, , 

.

Substituting (9) into (8), the extended loss probability is,

 
. (10)

Important parameters are the failure rate ratio, Ψ=λES/
(β+λES), and the key characteristic time, or e-folding time-
scale, 1/(β+λES). Therefore, for any given initial power 
loss, Q, the measure of improved resilience, RES(Q), by 
successfully utilizing emergency back-up systems is the 
steadily declining probability ratio, from Equations (7) 
and (10),

 . (11)

The role of the ratio of the key failure rate parameters 
is now self-evident, with recovery timing depending on 
which failure rate dominates. This result can be general-
ized for deploying any number of independent redundant 
and/or diverse back up systems with differing failure 
rates [15].
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3. Results: Comparisons 
and verification with data 

To set the parameters and validate the theory of Section 
2, we can now sequentially and systematically compare the 
predictions of Equations (3) (7) and (10) with large-scale loss 
and restoration data. The events considered all fully include 
emergency responses, human actions, procedural guidance, 
specialized repair crews, and management decisions.

3.1.National and regional outage 
data compared to theory

The original USA outage data from the NERC database 
for 1984-2000 were shown in [11] as a graph with dots and 
lines on a log-log plot; but because of the unavailability of the 
actual data1, we were forced to hand transcribe using enlarged 
images. The error incurred is a maximum of about 5% in 
probability for exceeding a given power loss or outage, P(Q)
i, which is sufficient accuracy for the purposes of rare event 
prediction (see below). For the observed sample of outages, 
we define the likely mean or probable average outage as,

.

1 Our requests were declined for access to and use of the 
original data files and numbers for the plots in [11,12]. Sur-
prisingly, the actual NERC data for the USA are proprietary 
(privately owned) so the line drawings are apparently all that 
are publically or openly accessible.

The data [11] then have an expected average out-
age of . As a basis for correlation, the 
comparison of the theory to data is shown in Fig.1, 
obtained by simply adjusting the single parameter, k=2, 
in Equation (3) so the overall outage distribution shape 
is reclaimed with, 

 . (12)

The theoretically-based probability then has a maximum 
uncertainty of order ±20% compared to the transcribed data, 
sufficient for present estimating purposes where the predic-
tive larger losses for Qi > 40,000 MW(e) have a probability 
of approximately 0.003 or less. The probability, of having 
an average system outage,  = 0.74 compared to the 

 =0.86 observed. 
A recent paper presented similar data plots for all eight 

NERC regions [12] which were fitted using totally empirical 
distributions. The individual probabilities are naturally one 
order lower for the largest recorded regional power losses 
since the average local outage,  and the best-fit k-value 
change significantly [18]. 

Furthermore, given this new theory, we can now pre-
dict the probability of a total (100%) blackout, being “a 
catastrophic power outage of a magnitude beyond modern 
experience” [1]. As an example, for the NPPC-region case, 
this probability is P (57,700 MW (e)) = 0.0015, and represent 
a pure quantitative prediction of an unimaginable and not 
previously experienced outage.

Fig. 1. Comparison of fitted theory to overall probability of any given power loss size (data extracted from [11])
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For no major damage, the country-wide losses data 
were generally caused by overall transmission and dis-
tribution failures or overloads, cascading through the 
system but with no additional physical damage due to 
flooding, fires or hurricanes etc [13]. The data all follow 
the Equation (5) exponential learning curve, each with 
its own e-folding rate of between 0.3-0.8 per hour, and 
coefficients of determination all of, R2 =0.9. As shown 
in Fig.2. the best fit of Equation (5) to the overall pooled 
data for four events in three countries, with a coefficient 
of determination, R2 = 0.69, is

 . (13)

It can be seen that even for these massive blackouts, 
restoration was accomplished in less than 10 hours, despite 
the factor of ten differences in the Qi MW(e) size or scale 
of the initial outage. 

The agreement of the trends is sufficiently encouraging to 
examine comparisons with loss data with additional damage 
and difficulty as follows.

3.2. Severe events compared 
to theory

The probability of local distribution power system 
non-recovery is, P(NR) = n(h)/N0, the ratio of the out-
ages remaining, n(h), to the total (initial or maximum) 

number,N0, being the complement of the usual reliability, 
R(t) = 1-P(NR). 

Summaries for 17 distinct events are listed in Tab.1. 
and more details can be found in [4]. They caused very 
different losses, since on average the size or scale of 
the overall outage at any time is roughly proportional 
to the number “without power” or individual outages 
reported, n(h), so . The USA average 24/365 
per customer use is about 10,000 kWh, so these events 
correspond to an initial power loss range of order 
8 < Q< 10,000 MW(e). Therefore, although generally 
only a fraction of the entire regional distribution system, 
they can be the entire local electricity grid (as for the 
Florida Keys) or urban community (as in Queens); 

As opposed to traditional plots of the numbers of outages 
versus time for different events (see e.g. [5]), the present 
formulation normalizes all the events, and demonstrates it 
is not solely the number of outages that affects characteristic 
recovery timescales. The data clearly show groupings be-
tween “normal” and “extreme” events restoration, with the 
“normal” group being faster; and events with more extreme 
damage and/or access difficulty clearly have much slower 
restoration and longer durations, by at least a factor of ten 
to twenty. 

As shown by Equation (5), the key issue is the extent of 
damage, social disruption or access difficulty as reflected in 
and by the characteristic or e-folding “degree of difficulty” 

Fig. 2. Overall restoration trends for large scale national power outages
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parameter, β per hour. For system design and recovery plan-
ning purposes from the actual data we define the loss event 
categories as (see Fig. 3):

• Type 0: Ordinary, 0.8>β>0.3, due to an effectively 
instantaneous outage with essentially no additional dam-
age, which we classify as outage restorations that are rela-
tively rapid, taking less than a day with simple equipment 
replacement, breaker resetting, line/grid repairs, and/or 
reconnection.

• Type 1: Normal baseline, β ~ 0.2, when outage numbers 
quickly peak due to finite but relatively limited additional 
infrastructure damage. Repairs are still fairly straightforward 

and all outages are restored over timescales of 20 to about 
200 hours.

• Type 2: Delayed, β ~ 0.1–0.02, progressively reaching 
peak outages in 20 plus hours, as extensive but repairable 
damage causes lingering repair timescales of 200–300 hours 
before almost all outages are restored. 

• Type 3: Extended, β ~ 0.01, with perhaps 50 or more 
hours before outage numbers peak due to continued damage 
and significant loss of critical infrastructure causing access 
difficulty. Restoration repair timescales last for 300–500 
hours or more with residual and complex outages lasting 
even longer.

Table 1. Power Outage Data Summary
(Event key: A= Alaska earthquake, B=Baseline; SS=Sandy, E=Storm Emma, F= Florence, G=Cyclone Gita, H=Harvey, 

HQ= Quebec ice storm, I=Irma, Ma=Matthew, MI= Michael, N=Nate, NH-New Hampshire ice storm, O=Ophelia; 
Q= Storm Quinn, R=Storm Riley, S=Snowstorm Grayson, T=Storm Toby, W=wildfires)

City and/or region Data source (event) Span h Maximum N0

Queens, NY NYPSC/ConEd(B) 88 25,000

New York, NY ConEd (SS) 336 1,345,000

Florida FDO (Ma) 240 10,234,174

Houston, TX CPE (H) 800 109,244

Corpus Christi AEP (H) 800 201,635

Florida South FPL (I) 400 1,810,290

Florida NW Duke-FL (I) 400 1,610,280

Tampa, FL TECO (I) 400 330,103

Florida Keys FKEPC/KES(I) 400 60,000

Florida Gulf Gulf Duke (MI) 320 396,700

Alabama APC-SCS (N) 60 156,000

N&S Carolina Duke Energy(F) 190 542,780

Eire, EU ESB (O) 240 385,000

Eire, EU ESB (E) 60 127,000

NE, USA Eversource (S) 50 25,796

NE, USA Eversource (R) 90 220,378

NE, USA Eversource (Q) 120 209,706

New Hampshire NHPS (NH) 312 432,600

New Jersey Jersey CP&L (T) 37 31,656

Quebec, Canada HydroQuebec (HQ) 286 1,393,000

Taranaki, NZ Powerco (G) 160 26,000

Napa, CA PGE (W) 450 359,000

Ventura, CA SCE (W) 450 8,400

Anchorage, AK ChugachMP&L(A) 28 21,713

Totals 5,801 20,061,455
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• Type 4: Extraordinary, β ~ 0.001 or less, for a cata-
clysmic event with the electric distribution system being 
essentially completely destroyed and not immediately 
repairable (e.g. Haiti, Costa Rica, and NAIC “catastrophic 
outages” [1]).

These categories allow for more refined emergency re-
sponse and communication, and more realistic restoration 
planning. This observed variation in the degree of difficulty 
(0.01 <β <0.2) implies an average repair rate spread of 20 
simply due to the damage extent. The irreparable fraction 
data range (the “tail” of the distribution) indicates that the 
chance of remaining unrestored is small but finite, say 
0.003<Pm<0.01,even after several hundred hours. As an 
example, for every million outages at first, despite achiev-
ing over 99% restoration after 600 hours several thousand 
could still be left without power. 

The data for Superstorm Sandy are shown (open circles) 
purely as an example, because it represents a “long term 
outage” as specifically defined by FEMA [1, p32]. The 
exponential form and trends do not change with overall 
duration.

The US DHS [5] makes the not unreasonable assumption 
that the restoration curve for power outages or “virtual” dam-
age due to cyber attacks is similar to that for known severe 
events, like hurricanes and ice storms. By this analogy, cy-
ber attacks causing power outages are postulated to simply 
increase the restoration timescales and numbers, which we 
would interpret as reflecting an increased “degree of dif-
ficulty” with β reducing further. The publically available 
data [5, 19] shows a cyber attack caused power outages by 

disconnecting networks and operator control before being 
restored after “several hours” .We would now classify this 
event as a Type 1 “normal” outage, with a P(NR) range of 
“cyber degree of difficulty” 0.1<β<0.22, because there was 
no concomitant or additional access, physical damage, or 
societal disruption affecting recovery of the power system 
infrastructure and associated computing/communication 
networks. 

For a hypothetical national catastrophic outage number 
of 100 million, as shown in Figures 2 and 3, and Equation 
(7), for some 150,000 the outage duration can be expected 
to exceed several hundred hours.

3.3 Emergency response data  
for the Hurricane Katrina 
and Fukushima nuclear 
events compared to theory 

We validate the method by comparing to cases of succes-
sively more severe power outages of national importance 
and impact, due to the loss of power. The events share the 
common feature of deploying engineered systems, back-up 
generators, pumping or cooling systems for which power 
has to be supplied somehow. 

The overall, integral and needed emergency system 
failure rate, λES, can be derived from the data for outage 
restoration in major facilities and with progressively greater 
difficulty:

(a) The needed failure rate for critical engineered sys-
tems without damage is derivable from outage restoration 
data to avoid core overheating following offsite power 

Fig.3. Simplified categories of outage restoration difficulty and timescales.
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loss1 for multiple US nuclear plants [20]. These restoration 
events can be considered “normal” or Type 1 with β~0.22 
without additional major damage or difficulty, as in minor 
ice storms, localized fires, and urban outages such as the 
Queens blackout in New York city [4,15]. In addition, the 
“Failure probabilities for operator to recover AC power” 
using emergency batteries and diesel generators (DGRs), 
P(ES)DGR ,after the onset of SBO were calculated in [21] for 
a “representative” large PWR unit. The best fit theoretical 
line through the nine tabulated points [21, Table 4-13], with 
elapsed time, h, hours, is, with R2=0.99, 

 P(ES)DGR = 0.8 e–0.087h (14)

This result implies an average integral emergency genera-
tor failure rate of λDGR~ 0.09 per hour. Using this rate, the 
long-term probability of extended outage is P(ES) ~ Ψ=λ/
(β+λ) = 0.09/(0.22+0.09) ~ 0.29, or nearly 30%..

(b) For analyzing even more demanding conditions, a 
more severe event was the inundation of New Orleans by 
Hurricane Katrina in 2005, causing extensive record flooding 
and infrastructure damage [14]. The failure of emergency 
flood-prevention systems to successfully deploy and operate 
to avoid flooding is a known example of a high degree of 
difficulty in managing the consequences of a major disaster 
also causing loss of power. The extensive reports show: “The 

1 In nuclear reactor risk analyses, these event sequences 
are traditionally termed Station Blackout (SBO) following 
loss of onsite and/or offsite power (LOSP/LOOP), and the 
designs include multiple diesel generator and battery back 
up systems. 

system’s performance was compromised by the incomplete-
ness of the system, the inconsistency in levels of protection, 
and the lack of redundancy” [14, Volume 1]. Several hundred 
flood prevention pumps were distributed in four regions but 
many became inoperable, themselves failing due to flood-
ing, power loss and/or forced evacuation [14, Vol VI , Figs 
12, 16, 19 and 22]. 

The integrated emergency systems failure rate, λES , of 
the flood prevention systems and of the back-up emergency 
pumps to operate, was determined from the fractional op-
erating pump data [14, 18]`. The fitted dynamic probability 
for successful overall emergency pump system operation, 
P(ES)h ,correcting for the running total, for hours, h, after 
the Katrina event started, was

 P(ES)h = 0.8 e–0.003h (15)

Hence, for these diverse flood prevention and emer-
gency backup systems, the implied time-averaged failure 
rate is λES~0.003 per hour; while at h= 0 hours, there is 
an initial operating probability of P(ES)h ~0.8, or ap-
proximately 80%. This initial fraction is identical to that 
for the “normal” nuclear plant events (see Equation (14)), 
and only slightly lower than the US ACE stated availabil-
ity expectation of 90%. But this high value only exists 
at the beginning not throughout the event, progressively 
decreasing (to 20-30 %) over several hundred hours as the 
developing damage, flooding extent and restoration access 
issues worsen. 

(c) Finally, combined LOSP/LOOP of extensive dura-
tion was caused to the nine nuclear reactors at Fukushima 
by the Great NE Japan offshore earthquake and the result-

Fig.4. The probability of extended systems failure, P(ELAP)h, for differing emergency system (ES) failure rates, and comparison to data 
from the Hurricane Katrina and Types 1 and 3 nuclear plant events
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ing record tsunami [22,23].The engineered system failures 
were power line damage and unexpected overtopping of 
sea walls and flood barriers, resulting in loss of power, 
disrupted controls, failures of emergency cooling systems, 
and damage to back-up systems and pumps. Power was 
not restored in sufficient time to manage or prevent the 
occurrence of major damage, with highly difficult and 
demanding conditions including explosions and radia-
tion contamination. Restoration attempts for power and 
cooling included simultaneous emergency efforts to 
restore grid power from damaged offsite power lines, 
provide power onsite, and use whatever back-up, battery, 
pump, mobile, or other even ad hoc systems that could 
be deployed. 

Using Equation (9) we calculated the actual severe event 
non-restoration or extended failure probability data for 
such apparently disparate Type 3 events, with β~0.01 [15]. 
In Fig. 4, the extended failure data for Fukushima Daiichi 
Units 1–6 and Daiini Units 1, 3, and 4 is compared with the 
predicted probability of extended systems failure, P(ELAP)
h for Hurricane Katrina using the actual emergency pump 
failure rate , λES =0.003, as deduced above (see Equation 
(15)). Also shown are the calculated effects of a wider range 
of better (λES=0.001) or worse (λES=0.01) emergency or back 
up systems failure rates. For comparison, the shorter time-
scale Type 1 “normal” nuclear plant SBO results (β=0.22) 
are shown using the emergency systems failure rate of 
λ~0.091 that was derived from the published nuclear plant 
SBO calculations [21].

Discussion

Therefore, we have shown that for all these “extended” 
Type 3 events or major disasters, the actual emergency sys-
tems failure rate range encompassing that actually observed 
is 0.001<λES<0.01 per hour. This range includes different 
engineered systems, multiple redundant/diverse generators, 
relevant human and management actions, access and repair 
difficulty issues, and restoration and procedural processes 
during emergency recovery and disaster response. The 
probability of a prolonged or very extended outage has been 
shown to be non-negligible.

Taking the observed β and λ rate values as typical for any 
severe event, the critical time, t* = 1/(β+λ)= 1/(0.01+0.003) ~ 
77 hours, and is dominated by the restoration difficulty; while 
at very long times, 
, or about a 25% chance of extended systems failure or 
non-recovery even with emergency restoration. Hence, for 
major events we should expect power and pumping outage 
durations lasting at least several days, even with multiple 
backup systems available or externally supplied. 

In sections 3.1,3.2 and 3.3 we have been able to inter-
compare completely disparate and hitherto apparently 
unrelated separate outage events, all the way from major 
losses to recovery and deploying back up and emergency 
generating systems. The unifying physical mechanism 
is the link between theoretically–based statistical theory 

[6,7,8] and the understanding of the importance of human 
learning behavior [9] on system recovery and required 
resilience[1,25]. 

Conclusions

Power generation and distribution systems are part of 
a nation’s critical infrastructure. Power losses or outages 
are random with a learning trend of declining size with 
increasing experience or risk exposure, with the largest 
outages being rare events of low probability. Data have 
been collected and inter-compared for power losses and 
outage duration affecting critical infrastructure for a wide 
range of severe events in Belgium, Canada, Eire, France, 
Sweden, New Zealand and USA, including Hurricane 
Katrina flooding New Orleans and the Fukushima reactor 
meltdowns. 

The unifying mechanism is the theoretically–based sta-
tistical learning theory combined with the understanding of 
the importance of human behavior on system recovery and 
resilience. Using this theory, a new correlation has been 
obtained for the probability of large regional power losses 
for outage scales up to nearly 50,000 MW (e) for events 
without additional infrastructure damage that have been 
generally fully restored in less than 24 hours. 

The theory was extended to more severe events with 
extended outage durations, including damage due to 
natural hazards (floods, wildfires, ice storms, tsunamis, 
hurricanes etc.). The observed variation in recovery 
timescale of up to more than 600 hours depends on the 
degree of restoration difficulty. The irreparable fraction 
(the “tail” of the distribution) indicates that the chance 
of remaining unrestored is small but finite, even after 
several hundred hours. For the first time, the impact on 
restoration probability using emergency systems has also 
been quantified. 

Therefore, explicit expressions have been obtained and 
validated for both the probability and duration for the full 
range from “normal” large power loss and to extended out-
ages in rare and more “severe” events with greater access 
and major repair difficulty. This new formulation enables 
prediction and planning for large-scale unprecedented 
outages of interest for emergency planning and national 
response actions.

Appendix: General equation 
for rare events 

The more general form of this new EVD Equation (3) 
is, for any variable, x, where the over bar is the relevant or 
selected average value: 

 . (A1)

There are just two “adjustable” parameters, the average, 
, and the learning constant, k, where both have physical 
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significance. This equation can be compared to typical 
arbitrary three-parameter Generalized Extreme Value Dis-
tributions (GEVD) quoted elsewhere for power outages [23] 
and floods [24] of the general form:

 . (A2)

For the conventional “named” distributions:
• Gumbell Type 1 ξ=0
• Frechet Type 2 ξ>0 
• Weibull Type 3 ξ<0
Ockham’s Razor suggests using the simplest. The reader 

is of course free to adopt whatever best suits the purpose 
and represents appropriately the physics, available data and 
logic of the situation.
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