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Abstract. The Aim of the paper is to reduce the number of hazardous events on railway tracks
by developing a method of prediction of rare hazardous failures based on processing of large
amounts of data on each kilometre of track obtained in real time from diagnostics systems.
Hazardous failures are rare events; the set of variate values of the number of such events for
an individual kilometre of track per year is: [0, 1]. However, for a railway network as a whole
the yearly number of such events is in the dozens and efficient management requires the
transition from the estimation of the probability of hazardous failure occurrence to the identifi-
cation of the most probable location of failure. Methods. The problem of identification of rare,
but hazardous possible events out of hundreds of thousands of records of non-critical railway
track parameter divergences cannot be solved by conventional means of statistical processing.
Hazardous events are predicted using the above statistics and artificial intelligence. Big Data
and Data Science technology is used. Such technology includes methods of machine learning
that enable item classification based on characteristics (features, predicates) and known cases
of undesired event occurrence. The application of various algorithms of machine learning is
demonstrated using the example of prediction of track superstructure failures using records
collected between 2014 and 2019 on the Kuybyshevskaya Railway. Findings and conclusions.
The result of facility ranking is the conclusion regarding the location of the most probable
hazardous failure of railway track. That conclusion is based on the correspondence analysis
between the actual characteristics of an item and conditions of its operation and the cases of
adverse events and cases of their non-occurrence. The practical value of this paper consists
in the fact that the proposed set of methods and means can be considered as an integral part
of the track maintenance decision-making system. It can be easily adapted for online operation
and integrated into the automated measurement system installed on a vehicle.
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1. Introduction

The role of digital technology in the process man-
agement is on a steady rise. Automated management
systems (AMS) enable much higher rate of business
operations performance; autonomous control systems
are deployed in trains and airplanes ensuring traffic
safety at speeds beyond human reaction time. Today’s
diagnostics tools detect things the human eye is un-
able to capture and are used in healthcare, engineer-
ing, space exploration and other areas of science and
industry. But the digital world is not limited to the
automation of processes humans cannot perform,
especially in case of major manufacturing facilities.
Since 2016, JSC RZD has constructed an electronic
document management system that connects over a
thousand companies involved in freight transportation
[1]. In the Lastochka EMUs diagnostic information is
collected using 342 sensors and instruments. Together
with the locomotive diagnostics systems, JSC RZD
employs dozens of AMSs that provide the company
with information on the condition of track [2, 3],
power supply equipment [4], traffic safety systems
[5], train graph [6] and a large number of other items
and processes. Each of JSC RZD’s AMSs is designed
to solve individual problems, but in order to manage
railway transportation in a holistic manner corporate-
level systems were developed: EK ASU I (Single
Corporate Automated Infrastructure Management
System), EKP URRAN (Single Corporate Platform
for Managing Resources, Risks and Dependability
at Lifecycle Stages), EK ASU TR (Single Corporate
Automated Workforce Management System), EK ASU
FR (Single Corporate Automated Financial and Assets
Management System). The existing data collection
and storage systems, as well as the corporate systems

Hundreds of thousands of lines of

that aggregate information from various sources, en-
able JSC RZD to successfully apply the Data Science
technology (see. Fig. 1).

2. Relevance of track superstructure
hazardous failure prediction

High train traffic and speed, environmental condi-
tions, ageing cause tear and wear of railway infra-
structure, primarily the track. Rail defects may cause
derailments, accidents or crashes. Such hazardous
events are associated with damage to the track, power
supply systems, as well as cars and locomotive units
with potential exclusion from the inventory rolling
stock [7]. Derailed units of rolling stock may also in-
trude into the operational space of the adjacent track,
which may cause a collision with an opposing train and,
as the consequence, make damage catastrophic [8, 9].
A significant share of hazardous events attributed to
the condition of track is typical not only to Russia’s
railways. Over the last decade, about one third of all
railway incidents in the US were caused by track-related
defects [10].

The analysis of derailments, accidents and crashes
involving units of freight trains identified that such
events caused by track malfunctions could occur on
a kilometre of track rated, for instance, as “good”. In
this context, the aggregated estimate of a kilometre
of track is not sufficient for predicting its condition,
and it is required to take into consideration other
parameters: number of widenings, realignments, etc.
However, the collection of additional parameters
alone will not suffice. According to [11], only a
part of data on a controlled item is useful in terms
of decision-making when managing specific events
(see. Fig. 2).
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Fig. 1. JSC RZD AMSs as the foundation for Big Data application
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Fig. 2. Transformation of large volumes of raw data into actionable information

Modern methods of multiple factor data analysis
and machine learning technology that allow includ-
ing over 50 factors into models enable — based on
existing knowledge of measured featured that char-
acterize the condition of track — making conclusions
regarding the need for urgent repairs in order to
avoid track failures and derailments, accidents and
crashes caused by an unsatisfactory condition of
track. Conclusions regarding the efficiency of Big
Data and Data Science can be made based on exist-
ing international practical experience, the analysis
of which is set forth below.

3. Overview of the methods

of machine learning and their
application for the purpose of
railway track defects analysis

With the growth of the amount of data collected by
monitoring devices, such as wireless sensor networks or
high-definition video cameras that are widely used for
monitoring of critical railway infrastructure, machine
learning also becomes increasingly popular in respect
to improving the operational performance and depend-
ability of railway systems [13].

Currently, due to the rapid technological advance-
ments and widespread deployment of inexpensive
sensors and wireless communications, the role of the
Internet technology is increasing in the context of ef-
ficient implementation of maintenance strategies in a
whole range of industries. In railway transportation, Data
Science is also in active use [12]. Machine learning is
increasingly popular as means of improving the depend-
ability of railway systems. It also allows minimizing the
daily cost of the maintenance [13].

Methods of machine learning can be subdivided into
classical algorithms [14] and deep learning methods [15].

The main difference is the presentation level. The classi-
cal learning methods include the principal components
method, support vectors method [16], solution trees [17],
random forest [18, 19, 20], logistic regression [21] and
nearest neighbours method [22].

In [23], the methodology of data classification for
rail condition monitoring is presented. The authors
put the emphasis on identifying the patterns of failure
occurrence in sharp turns (horseshoe curves) using the
principal components method and data obtained as the
result of in situ inspections of the Swedish railway
network.

In [24], the support vectors method is used for pre-
dicting a situation, when minor track defects deteriorate
into major ones.

In [25], based on decision trees, a system is devel-
oped for preliminary automatic ranking of incidents that
evaluates the probability of a pre-failure state based on
the existing features.

Jiang and co-authors [26] proposed a hybrid approach
to identifying contact fatigue based on ultrasound laser
data.

In [10], the principal components method along with
the support vectors method were applied to a set of data
on 31 items collected on a US class I network for the
purpose of detecting four types of surface defects.

As of late, the academic community has been making
use of the advantages of the deep learning methods for
studying rail defects. Researchers believe that deep learn-
ing may become an element of completely automatic
railway monitoring systems [27].

Deep learning algorithms based on neural net-
works are employed as the primary tool for detecting
structural defects in rails. The convolutional neural
networks (CNN) are most widely used. That is due
to the widespread use of video cameras that supply
the research community with vast quantities of data
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and enable the application of more complex learn-
ing methods. However, CNN is a “black box” and
practically cannot be interpreted. In other words, a
researcher of machine learning cannot explain how a
CNN model made its predictions or prove their reli-
ability for the end user.

In [28], the CNN technology is used in examining
the approaches to solving the problems of automated
processing of images of track superstructure for the
purpose of identifying the locations of potential de-
fects. Images were used that had been collected by
one of the trains of the Centre for Diagnostics and
Monitoring of Infrastructure Facilities of the West
Siberian Railway.

Lee and co-authors [29] used artificial neural networks
and support vectors method for predicting the tear and
wear of the ballast section based on such factors as the
curvature, tonnage handled, etc. The authors however
note that in order to obtain stable predictions, measure-
ments must be taken over at least two years.

A more detailed overview of the application of various
methods of machine learning in detecting track defects
can be found in [30].

The diversity of the used models is evidence of the fact
that the application of the machine learning technology
currently represents a research process that includes the
following stages:

- analysis of the sources of information on the track
condition;

- data condition for machine learning;

- definition of machine learning objectives;

- training of models;

- selection of the best model;

- application of the model.

4. Algorithm of conditioning of
railway track condition data as part
of the JSC RZD machine learning
application

Data received from JSC RZD AMSs are conditioned
using an algorithm that includes 5 stages shown in
Table 1.

Sample is one of the key concepts of machine learn-
ing. A sample is a finite set of cases (items, instances,
events, test articles) and corresponding data (item
characteristics) that form the description of the case.
A sample that includes a full set of available data must
include the target variable, i.e. an indicator, the predic-
tion of whose value is the goal of machine learning.
Additionally, a sample is subdivided into two parts:
the learning sample and the test sample. The algorithm
of conditioning of the data obtained from JSC RZD’s
AMSs for sampling as part of machine learning is
shown in Fig. 3.

5. Algorithm of machine learning
application for predicting hazardous
failures of railway track

The problems of machine learning are normally de-
scribed in terms of the ways a machine learning system
is to process the learning sample. As the case of TSS
learning sample, a kilometre of TSS was chosen, whose
condition is characterized by 77 parameters, including
the diagnostic results, operational conditions, qualitative
estimates. The values of such parameters are represented
in the form of vector xeR", each element of which is the
value of a feature.

Table 1. Stages of data conditioning

Name of stage Aim

Conditions of stage
performance

Relevance criterion of the stage

Improvement of simulation

Data cleansing through higher quality of data

Performed always

Performed always

Improvement of simulation
through the capability to compare
sequences with different physical

units and/or value ranges

Data conversion

Performed if required
for discrete sequences

1. Value variation ranges of various
features differ more than 5 times.
2. Different physical units of fea-

tures?

Extension of the scope of applica-

Data sampling ble models

Performed if required
for continuous se-
quences

1. Target feature is a continuous val-
ue, but it is required to evaluate the
probability of being within the range.
2. It is planned to employ a method
that does not allow using continuous
data.

Improvement of simulation

Text cleansing through higher quality of data

Performed if required
for continuous se-
quences

It is planned to use information from
the text in the simulation

Quality verification of the devel-

Sampling oped models

Performed always

Performed always
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Application of machine learning methods for predicting hazardous failures of railway track assets

Classification, as the most common machine
learning problem, consists in building models that
serve to assign the examined item to one of the
several known classes. With respect to that type of
problems the classification algorithm is to answer
the question as to which category the item belongs
to. In terms of traffic safety (prevention of derail-
ments, accidents and crashes) each item (kilometre
of TSS) is divided into two classes: 0, a kilometre
with no hazardous TSS failure; 1, a kilometre with
a hazardous TSS failure.

From the learning sample we select the best param-
eters for the classification algorithm. On the test sample
we calculate the classification error and in order to select
the best algorithm.

Let X'be an object space that is described by the set of
features X={X", ..., X"}"; Y={0,1} be the set of allowable
responses; v :X—Y be the target dependence onﬁlfy known
for the items of learning sample Z" = (x,, y, )’_:1, where
x, is the vector of feature values, while y,=y'(x,) is the
responses of the target variable, i=1, ..., N.

Let us denote x={x,, ..., x,} , y=1p, ..., v,} -

The learning problem consists in the requirement to
re-establish the functional relationship between items
and responses, i.e. to construct algorithm a:X—Y that
approximates the target relationship y" in the whole set
X, not only the items of the learning sample Z".

Figure 4 shows the algorithm of application of six
primary machine learning methods for kilometre of TSS
classification.

6. Criteria of best model selection

A number of methods have been devised for the
purpose of analysing the accuracy of the machine learn-
ing algorithm and comparing the accuracy of different
algorithms.

For the purpose of problem binary classification, let
us introduce the following designations:

TP, the number of correctly predicted category «1»
items;

FN, the number of category «1» items with «0»
prediction;

FP, the number of category «0» items with «1» pre-
diction;

TN, the number of correctly predicted category «0»
items.

Below are the primary measures of the quality of
binary classification models.

1) General accuracy of the algorithm

TP+ TN

" TP+ FP+FN+ TN
ficiency of the classifier in terms of correct answers.

that defines the overall ef-

2) False alarm FPR = il that shows the effi-
FP+ TN

ciency of the classifier in terms of anomaly prediction.

3) Accuracy of the algorithm PR = 1P that
TP+ FP

shows the share of accurately predicted items identified
as category «1».

4) Completeness of the algorithm RE = _IP that
TP+FN

shows the share of items that are effectively category «1»

and were predicted correctly.

2-PR-RE ¢
PR+RE

harmonic average of accuracy and completeness.

6) Area under the curve of AUC errors, the global
quality characteristic whose values are between 0 and
1. The value 0.5 corresponds to random guessing,
while the value 1 implies correct recognition. AUC is
the area under the ROC curve. The ROC curve shows
the correlation between the share of false positive
rate (FPR) and share of correct positive classifica-
tions (RE). The ROC curve is a sufficiently complex
measure of algorithm accuracys; it is examined in more
detail in [31].

5) F-measure of the algorithm, F = he

7. Numerical experiment of line
categorization based on failure
prediction

Let us examine the problem of TSS failure classifi-

cation. In order to prevent derailments, accidents and
crashes, throughout the railway network, the condition

Table 2. Model quality indicators

Quality |Logistic regression| Decision tree | Random forest | Support vectors | Nearest neighbours
indicator (sample 2) (sample 2) (sample 2) method (sample 2)| method (sample 1)
1.AC 0.74 0.76 0.75 0.73 0.72
2. FPR 0.41 0.28 0.28 0.41 0.46
3.PR 0.78 0.94 0.94 0.94 0.89
4.RE 0.78 0.94 0.94 0.94 0.89
5. F-measure 0.78 0.86 0.86 0.94 0.88
6. AUC 0.68 0.83 0.83 0.76 0.71
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Training conditions:

1) Learning sample: 2014-2018 statistics

2) Prediction for 2019

Prediction accuracy for 2019 of the decision tree model
based on the 2014-2018 data

Percentage of predicted failures: 89%
Percentage of predicted good states: 68%

% correctly predicted up
states

1% correctly predicted failures
100
2018
90 NNK Logistic regres
O
O
80 VM
@)
70
50 60 70 80

Fig. 5. Comparison of models in terms of quality

of track is checked for deviations from standard values
using a geometry car. Based on the obtained data each
kilometre of track is assigned a rating: “unsatisfactory”,
“satisfactory”, “good” or “excellent” that is supposed to
indicate the hazard of transportation incident caused by
the condition of the track.

Between 2014 and 2019, TSS condition statistics
were collected on the Kuybyshevskaya Railway. The
following failures of railway infrastructure elements
were registered: isolated joint, concrete tie, rail line as a
whole, rail joint, geometrical parameters of the track, etc.
Over a number of years, for each kilometre of track the
following parameters were measured monthly: number
of widenings, number of deviations, number of realign-

ments, number of sags, traffic speed within the specific
kilometre, etc.

If, within a kilometre of track, a failure is detected,
the response is assigned the value of «1», otherwise,
the value is «0», i.e. a set of category labels is of the
form Y={0,1}. It is required to solve the problem of
binary classification based on the observations made
in prior moments of time and verify the efficiency of
the algorithm using the 2019 observations. Based on
the performed classification, a hazardous failure is
predicted.

194328 observations of various items (kilometres of
track) were obtained. 267 items out of them were af-
fected by hazardous failures. The data were subdivided

Table 3. List of test sample items within the zone of unacceptable risk

Date of check naflrcic(ll(el:::?;f;nt Ope;.ia:lteional n’lrlll.z;l:r Kilometre hal;::'l()l?)ll)lisligiloufre
29-JAN-19 9 2 1 979 0.55
29-JAN-19 9 1 1 969 0.51
14-JAN-19 9 2 1 979 0.48
14-JAN-19 9 1 1 969 0.48
29-JAN-19 9 2 1 1018 0.37
29-JAN-19 9 2 1 1003 0.28
14-JAN-19 9 2 1 1018 0.21
14-JAN-19 9 2 1 1003 0.17
23-JAN-19 20 1 1 36 0.003
25-JAN-19 20 2 1 36 0.0014
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into the learning sample (192375 items, including 257
with hazardous failure, 2014 — 2018 data) and the test
sample (1953 items, including 10 with hazardous fail-
ures, January 2019 data).

The classification problem was solved using several
machine learning algorithms: logistic regression, solu-
tion tree-based algorithm, random forest method, meth-
ods of support vectors and nearest neighbours.

Learning samples were generated:

learning sample 1: 2014 — 2018 observations using
standardized data;

learning sample 2: 2017 — 2018 observations using
standardized data.

Additionally, data reduction was performed. The
aim was to improve the quality of simulation through
balanced learning samples, in which the number of
observations with category «1» was at least 40% of the
total number of observations.

Feature selection was done by means of recursive se-
lection of the feature for each machine learning method.

Fig. 5 shows a comparison of the quality of models,
Table 2 contains the indicators of model quality. The
table shows models trained using the samples that dem-
onstrated the best quality indicators for its type of model.

The results of model ranking: rank 1 is decision trees
(trained using sample 6), rank 2 is random forest (trained
using sample 6).

Table 3 shows a list of TSS elements with the highest
probability of hazardous failure (corresponding to the
highest levels of risk) in January 2019.

Upon an analysis of the data from Table 2 it can
be concluded that the best possible results of item
classification are ensured by using methods based on
decision trees.

Shown in the last column of Table 3 are the values of
frequency of trees classifying item category as “1”, i.e.
the number of trees that identified an item as “kilometre
with hazardous TSS failure”, in relation to the total num-
ber of constructed trees. Based on the results of the action
of training sample classification algorithm, the threshold
value of probability of failure is to be chosen depending
on which classification error is the priority for us. The
higher the threshold, the rarer the items will be classified
as “kilometre with hazardous failure” (TP decreases, but
TN grows). The lower the threshold, the lower will be
the number of “kilometre with hazardous failure” items
will be missed, but the higher the number of item with
no hazardous failure (“0”) will be identified as having
a hazardous failures (“1”) (TP and FP increase). In the
context of TSS item classification, it is important not to
miss an item with possible hazardous failure. Albeit at
the cost of a larger number of items with no hazardous
failure (“0”) that will be falsely identified as items with
a hazardous failure (“17).

Subject to the results of classification for the learning
sample the threshold was chosen as p=0,15. On the test
sample that resulted in a situation, when out of 10 items

with hazardous failures 8 were classified correctly and
5 items with no hazardous failure (marked “0”) were
also classified as items with a hazardous failure. If the
threshold was set at p=0,10, the number of correctly
identified items with a hazardous failure (“1”’) would
remain unchanged, while the number of incorrectly
classified items with no hazardous failure (“0”) would
have risen to 14. Under p=0,001, all ten items with a
hazardous failure (“1”’) would have been classified cor-
rectly, but at the same time, the number of incorrectly
identified items with no hazardous failure (“0”) would
have risen to 251.

8. Conclusion

The paper presents the methodological foundations
of prediction of rare hazardous events (failures) that
can be used in the design of an automated system that
performs real-time prediction of adverse events in
railway transportation within a certain period of time
by using and processing large amounts of informa-
tion. The components of such system — mathematical
models and methods, various metrics for model quality
verification — should be defined subject to and based
on the problem of prediction of railway track failures
depending on various sets of factors. This problem was
used in the process of optimization of the sequence
of actions for taking the decision regarding the need
for additional maintenance operations at any given
railway line. For that purpose, models were compared
using the proposed metrics. The ranking of facilities
produced a conclusion regarding the presence of key
indicators and their values of early warning of risk
factors. That conclusion is based on the correspond-
ence analysis between the actual characteristics of
an item and conditions of its operation and the cases
of adverse events and cases of their non-occurrence.
The proposed set of methods and means can be eas-
ily integrated into an automated measurement system
installed on a vehicle.
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