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Abstract. The Aim of the paper consists in improving the efficiency of dependability indicator 
estimation for the plan of tests with addition, i.e. probability of no-failure and mean time to 
failure. Due to economic considerations, determinative dependability tests of highly depend-
able and costly products involve minimal numbers of products, expecting failure-free testing or 
testing with one failure, thus minimizing the number of tested products. The latter case is most 
interesting. By selecting specific values of the acceptance number Q and number of tested 
products, the tester performs a preliminary estimation of the dependability indicator, while se-
lecting Q = 1 the tester minimizes the risks caused by an unlikely random failure. However, as 
the value Q grows, the number of tested products does so as well, which makes the testing 
costly. Therefore, the reduction of the number of products tested for dependability is the first-
priory problem and, in this context, economic planning of testing with addition is becoming 
increasingly important. We will consider binomial tests (original sample) with addition of one 
product (oversampling) to testing in case of failure of any of the initially submitted products. 
Testing ends when all submitted products have been tested with any outcome (original sam-
pling and oversampling). Hereinafter it is understood that the testing time is identical for all 
products. Testing with the acceptance number of failures greater than zero (Q > 0) conducted 
with addition allows reducing the number of tested products through successful testing of the 
original sample. Methods. Efficient estimation is based on the integral approach formulated 
in many papers. The integral approach is based on the formulation of the rule of efficient 
estimate selection  specified on the vertical sum of absolute (or relative) biases of 
estimates  selected out of a certain set based on the distribution law parameter, where 
n is the number of products initially submitted to testing. The criterion of selection of an effi-
cient estimate of the probability of failure (or PNF) at a set of estimates  is based on 
the total square of absolute (or relative) biases of the mathematical expectation of estimates 

 from probability of failure p for all possible values of p, n. Conclusions. The paper 
examines the probability of no-failure estimates for the plan of tests with addition. For the case 

of n > 3, the estimates  and composite estimate  are more ef-

ficient in comparison with estimate . The composite estimate of the probability of 
no-failure  should be used in failure-free tests. For the case of n > 3, testing 
with the acceptance number of failures greater than zero (Q > 0) conducted with addition al-
lows reducing the number of tested products through successful testing of the original sample. 

The composite estimate of the mean time to failure  is bias-efficient 

among the proposed mean time to failure estimates. The obtained composite estimates  and 
 are of practical significance in the context of failure-free testing with addition.
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Introduction

Due to economic reasons, determinative dependability 
tests of highly dependable, costly products involve minimal 
numbers of products, expecting failure-free testing (accept-
ance number Q = 0) or testing with one failure (Q = 1), 
thus minimizing the number of tested products. The latter 
case is most interesting. By selecting specific values of the 
acceptance number Q and number of tested products, the 
tester performs a preliminary estimation of the depend-
ability indicator, while selecting Q = 1 the tester minimizes 
the risks caused by an unlikely random failure. However, 
as the value Q grows, the number of tested products does 
so as well, which makes the testing costly. Therefore, the 
reduction of the number of products tested for dependability 
is the first-priory problem and, in this context, economic 
planning of testing with addition is becoming increasingly 
important [1]. 

Preparation of the plan of tests 
with addition

We will consider binomial tests (original sample) [1, 2] 
with addition of one product (oversampling) to testing in 
case of failure of any of the initially submitted products. 
Testing ends when all submitted products have been tested 
with any outcome (original sampling and oversampling). 
Hereinafter it is understood that the testing time is identical 
for all products. 

Testing with the acceptance number of failures greater 
than zero (Q > 0) conducted with addition allows reducing 
the number of tested products through successful testing of 
the original sample.

The Aim of the paper

The aim of the paper consists in improving the efficiency 
of dependability indicator estimation for the plan of tests 
with addition, i.e. probability of no-failure (PNF) and mean 
time to failure (MTF).

Properties of probability of no-failure 
estimates for a plan of tests with 
addition

Let n be the number of tested same-type products initially 
submitted to testing, while R=r is the number of failed prod-
ucts, including k failures out of n initially submitted products 
and m failures out of k subsequently submitted products, i.e. 
r=k+m. Then, the number of tested products will be N=n+k. 
For the sake of convenient formula writing, in some cases 
(where possible), the designations of random values will be 
identical to their representations. Let failures be independ-
ent events, then the probability of occurrence is equal to r 
failures over the testing period (hereinafter referred to as 
Pn(R=r)) will be expressed with the formula that results from 
the following procedure ( ):

 

,

where q=1–p, p is the probability of failure,  is the number 
of combinations k out of n elements.

,

,

Out of the definition of probability 
, where  and Pn(R=r) 

we can easily obtain the probabilistic function of the plan 
of tests with addition:

  (1)

The average number of tested products over the period 
of testing with addition comprises the number of initially 
submitted products and the average number of those initially 
submitted products that failed, i.e. N=n+np. Then, the aver-
age number over the period of testing with addition will be 
E(R,n)=Np=E(k,n)+E(m,n)=np+np*p=(n+np)p=n(p+p2).

The PNF estimate  is efficient for a plan of 

tests with addition [1]. Let us examine the properties of the 

obtained estimate  and, as a consequence, PNF 

estimate  [1].

Let k+m=r>1, , then for various 

m1>m2 the following inequality is fulfilled

 
 (2)

I.e. the dependability of the controlled batch of products 
subject to the results of testing of a sample, in which the 
number of failed products out of the initially submitted is 
higher, than in the sample of the compared batch of products 
under the same number of failures, will always be higher, 
than that of the compared batch of products. In other words, 
while comparing the results of two finalized samples (under 
the assumption of identical numbers of failures), the priority 
in terms of dependability is given to those products, whose 
failures primarily occurred within the initial sample, rather 
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than the additional one. And in this regard oversampling 
enables remedial action in case of unsuccessful initial test-
ing. That constitutes the advantage of the test plan with 
addition.

Unbiassed estimates

The mathematical expectation of the estimate 

 will be expressed with formula [1]:

.

Estimate ,  is  generally biased 

 [1]. 

By equating mathematical expectation of the estimate 
 to parameter p we can easily obtain the unbiassed 

estimate of the probability of failure  for the case of 
n=1 [1]:

An unbiassed estimate is an indicator function, i.e. in case 
of failures estimate  becomes equal to one, otherwise to 
zero. The case of n = 1 is practically uninteresting as it is the 
same as the binomial plan and thus is not further considered 
in this paper.

The mathematical expectation of the estimate 

:

The unbiassed estimate for parameter p in case n = 2 will 
be expressed with formula [1]:

This estimate is not the only one. The second variant of 
parameter p estimation for the case of n = 2 [1]:

The unbiassed estimate of the probability of failure for 
the case of n=3 ( ) [1]:

Estimates , 2, ,  become useless, when it 
is required to estimate the unknown parameter p not equal 
to zero and one.

Let us introduce the concept of centered estimate [1, 7] 
(not to be confused with the central estimate [4]), namely: 
let the probability of failure estimate (hereinafter referred 
to as ) center the probability function (in our case that is 

 relative to the limit boundaries of its value range). 

That means that the ranges  and  of the values of 
such estimates with the probability of 0.5 cover the estimated 
parameter p. Such estimates we will call centered. Let us 
note that centered estimates for some test plans are close 
to efficient estimates [7]. In our case the centered estimate 

 is found using formula , 

where β does not possess confidence probability any more. 
Let us also note that the distribution law of statistic  is 
defined by the distribution law of random value R, which 
allows identifying the confidence boundaries.

Out of the definition of centered estimate follows that 
it defines the lower (upper) confidence limits (hereinafter 
referred to as LCL (UCL) of the range of unknown parameter 
p with confidence probability γ = 0.5 or significance level 
α = 0.5. On the other hand, any estimate of the LCL (UCL) of 
an unknown parameter range p can be interpreted as a point 
estimate of parameter p with a strong downward (upward) 
bias. The LCL (hereinafter referred to as ) (UCL (herein-
after referred to as ) of the range of unknown parameter p 
with confidence probability γ = 1 – α is calculated according 
to formula (the case of monotonous decrease [1]):

 
, . (3)

Let us note that centered estimates are – in terms of their 
efficiency – close to the best estimates [7-9], and despite the 
optimistic definition of the centered estimate  this 
estimate is biased with respect to the estimated parameter 

. However, this bias can be reduced, 
thus improving the efficiency [9]. For that purpose, it will 
suffice to minimize functional  by varying the 
probability value β=0,5+x in formula , where 

x>0 is a positive real number. Thus obtained estimate (here-
inafter referred to as ) is already not centered, 
but its bias is smaller compared to that of the centered esti-
mate , and therefore estimate  can 
be expected to have higher efficiency.
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Let us note that function  monotonously decreases as 

p grows (proven for cases of n<3) [1], therefore equation 

has a unique solution. Let us once again note that prob-
ability β does not imply confidence probability and cannot 
organize a two-sided confidence interval, as its boundaries 
“overlap” in opposing directions. Probability β is an indica-
tor parameter that discriminates an estimate out of a set of 
similar ones in terms of the method of construction β≥0,5.

Additionally, the confidence boundary (β≤0,5) represents 
a point estimate with a strong bias in relation to the estimated 
parameter. As the confidence probability β>0 grows, the two-
sided confidence interval degenerates first into a point, then 
stops existing. The one-sided confidence interval stops being 
such as confidence probability β>0,5 grows, as, with high 
probability β>0,5, will not cover the estimated parameter. 
The set of estimates with indicator parameter  
becomes a potential carrier of the efficient estimate.

Let us formulate the selection criterion of the efficient 
estimate of probability of failure (or PNF), construct – on the 
basis of the formulated criterion – an improved (but biased) 
failure probability estimation (and therefore, PNF estima-
tion) for a plan of testing with addition for the case of n > 3 
and choose the efficient estimate out of those available.

Methods of research of dependability 
indicator estimates

Efficient estimation is based on the integral approach 
formulated in [6-11]. The integral approach is based on 
the formulation of the rule of efficient estimate selection 

 specified on the vertical sum of absolute (or rela-
tive) biases of estimates  selected out of a certain 
set based on the distribution law parameter, where n is the 
number of products initially submitted to testing. 

Criterion of selection of efficient 
estimation for PNF

The criterion of selection of an efficient estimate of the 
probability of failure (or PNF) at a set of estimates  
is based on the total square of absolute (or relative) biases of 
the mathematical expectation of estimates  from 
probability of failure p for all possible values of p, n. 

Let τ be the test time of one product, then the selection of 
the efficient estimate of the probability of failure (or PNF) 
will only require the notion of bias-efficient estimate and 
variation of parameter p within 0≤p≤1. Therefore, for the 
sake of simplicity, as the criterion for obtaining an efficient 
estimate  functional (hereinafter referred to as 

) is constructed over limited set 1≤n≤I [7-9]:

 
 (4)

Estimate ,  that minimizes functional 
 over the given set of estimates, is called the 

bias-efficient estimate over the given set of biased estimates. 
Among the estimates, that afford about the same minimum to 
functional , we should choose the estimate that 
has the minimal mean-square deviation (classical definition 
of the efficient unbiassed estimate [2]). We will call this esti-
mate more efficient in comparison with the selected ones.

For the purpose of selecting the estimates with minimal 
deviation, a functional is constructed (hereinafter referred 
to as D( ) based on the accumulation of math-
ematical expectations of the squares of relative deviations 
of estimates  from parameter p for all possible 
values p, n [7-9]:

 
. (5)

We will call estimate that affords zero to functional L(
)=0 (unbiassed estimate) and minimum to func-

tional D( ) absolutely bias-efficient.
Let us limit the scope of tests 4≤n≤10, which, for highly 

dependable and complex products is the cost limit. Then 
formula (4) will be written as:

.

While formula (5) will be written as:

.

The performed calculations showed that estimate 
, that minimizes functionals  and 

, corresponds with β=0,5+x=0,5, i.e. x = 0 and 
subsequently .

Table 1 shows the results of substitution into functionals 
 and , in accordance with formulas 

(1) and (2), of the following probability of failure estimates 
:  [1], where 

Functionals  and  were calcu-
lated with the step of . Implicit estimates  and  
were calculated with the accuracy of 10-4. The scope of tests 
was limited with the range of 4≤n≤10.

Out of Table 1 follows that under the scope of tests 
4≤n≤10 estimate  and composite estimates dominate and 
acquire minimal biases. 

Out of Table 1 also follows that estimate  and composite 
estimates  are almost equal in terms of deviations of their 
values from parameter p and insignificantly exceed as such 
estimate . Therefore estimate  can be adopted as the de-
sired bias-efficient estimate among the available ones, when 
the scope of tests is n>3. However, when it is required to 
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estimate unknown parameter p with a value other than zero 
and one, estimate  should be used.

Let us note that, when calculating, variation of the step 
of summation ( ) modifies the results of the func-
tional, but does not bring essential changes. The result of 
comparison does not affect the estimates.

Example 1. Products are part of a redundant unit. It is 
required to perform a point estimation of the products’ PNF 
subject to the results of binomial tests of such products’ 
dependability. While planning determinative dependability 
tests the tester calculated sample size (N=n+k=5) assuming 
a single failure (Q=k=1), thus minimizing the risks caused 
by the occurrence of such unlikely random failure. 

The predicted value of PNF was calculated using a bias-
efficient composite estimate [9]:

where  is the implicit estimate of the 
binomial test plan [9]. The predicted value of PNF was 

, which complies with the 

product’s performance specification (PNF is to be not less 
than 0.8). Given that, during the test time, product failure 

is unlikely, it was decided to conduct dependability testing 
using addition in order to save costs. The testing can have 
two outcomes, i.e. failure-free and one failure (planned). In 
case of failure-free testing, there is no need for testing with 
oversampling. The calculations of possible PNF values are 
given in Tables 2 and 3.

Let us note that in case of binomial testing with curtailed 
sample N=n=4, Q=0 and when one failure r=1 occurs, 
the rules require retesting according to the same rules, as 

 [3]. Repeated binomial testing 

does not allow failures. Performing failure-free binomial 
tests with the acceptance number of failures of Q=1 will 
require a sample of size N=5, that is larger than the initial 
sample used in testing with addition N=4.

That is the advantage of testing with addition that allows 
making conclusions regarding the compliance with speci-
fications based on the results of a single test with different 
outcomes, i.e. N=n+k=4, r=0 and N=n+k=5, r=1 (without 
same-scope (N=n+k=4, r=0) testing as in the case of bino-
mial testing, where one failure is allowed Q=0).

Example 2. Per example 1, the tester, while calculat-
ing the size of the sample (N=4), made an allowance for 
one failure (Q=k=1). The predicted value of PNF was 

, which complies with the product’s 

performance specification (PNF is to be not less than 0.75). 
Given that, during the test time, product failure is unlikely, 
it was decided to conduct dependability testing using addi-
tion in order to save costs. The calculations of possible PNF 
values are given in Tables 4 and 5.

Criterion of selection of efficient 
estimate for mean time to failure

Let us assume that the products’ time to failure follows 
the exponential distribution law of probabilities (hereinafter 
referred to as d.l.) with parameter T0, where the latter is 

Table 2. Results of failure-free testing per example 1

PNF (failure-free tests with addition)
r=0, n=4, N=n+k=4+0=4, Q=1 PNF (binomial tests)

r=0, N=n=4, Q = 0

β=0,5 [1] β=0,5

0,871 1 0,871 0,963

Table 3. Results of tests with one failure per example 1

PNF (failure-free tests with addition)
r=1, n=4, N=n+k=5, Q = 1 PNF (binomial tests) 

r=1, N=n=5, Q = 1

β=0,5 β=0,5

0,687 0,8 0,8 0,8

Table 1. Results of the substitution of available 
probability of failure estimates into functionals 

 and 

Type of 
functional 4≤n≤10 4≤n≤10 4≤n≤10

0,00229 0,000219 0,000805

0,0205 0,0186 0,0164
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identical to the mean time to failure (hereinafter referred to 
as MTF). Then the expected value of PNF of one product 
within the given time τ will be defined by the equation:

.
As the quality criterion of the obtained efficient estimate 

of MTF a functional is constructed (hereinafter referred to 
as ), that is based on the sum of the squares of relative 
biases of mathematical expectations of estimates  
relative to parameter t of the exponential d.l. (MTF) for all 
possible values of t, n [6]:

  (3)

Integration is performed using all possible values of 
parameter (MTF) .

Let us examine the functional (hereinafter referred to as 
) based on the sum of mathematical expectations of the 

squares of relative deviations of estimates  relative 
to parameter t of the exponential d.l. (MTF) for all possible 
values of t, n [6]:

 
 (4)

The purpose of functionals  is to identify 
the scatter of the values of the available estimates.

Estimate that minimizes the available functionals is ef-
ficient among the available estimates of MTF.

Selection of the efficient estimate 
of MTF

Let us define the estimate of MTF ( ) for the plan of 
tests with addition as: 

,

where si are the instants of failure, i=1,2,…, R>0, S – is the 
total operation time. Let us complete estimate  for the case 
of R = 0 with value =S(k,m,τ,n).

Another case. In order to avoid dividing by zero while 
estimating the MTF , let us represent it as follows:

.

Let us consider a simple case and reduce the number of 
variables for estimates  and . For that purpose, let us 
assume that scatter si is symmetrical in relation to τ/2. That 

can be fulfilled for highly dependable products  [3]. 

Therefore S(k,m,τ,n)= (n–k)*τ+(k+m)*τ/2. 
Let us define the following estimates of MTF for the plan 

of tests with addition as:

, 

.

Functionals  and  were 
calculated with the step of . Implicit estimates  
and  were calculated with the accuracy of 10–4.

Table 4. Results of failure-free testing per example 2

PNF (failure-free tests with addition)
r=0, k=0, n=3, N=n+k=3+0=3, Q=1 PNF (binomial tests)

r=0, N=n=3, Q = 0
, β=0,5 , β=0,5

0,841 1 1 0,841 0,951

Table 5. Results of tests with one failure per example 2

PNF (failure-free tests with addition)
r=1, k=1, n=3, N=n+k=4, Q=1

PNF (binomial tests)
r=1, N=n=4, Q = 1

, β=0,5 , β=0,5

0,616 0,75 0,642 0,75 0,75

Table 6. Results of substitution into functionals 
 and  of MTF estimates: 

0, 1, , 3

Type 
of functional β=0,5 β=0,6

10,89 10,80 2363 1836

27,47 25,54 2373 1845
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Table 6 shows the results of substitution into function-
als  and , in accordance with 
formulas (3) and (4), of the following MTF estimates : 
0, 3, 1, .

Out of Table 6 follows that estimate 

 

is efficient out of the available estimates.

Example 3. Per example 1, products were tested during 
10 000 hours. Let us use the classical efficient estimate of MTF 

 for binomial plan [7] and ef-

ficient estimate of MTF  

[9], and construct on their basis the following composite 
estimate of MTF for binomial testing:

where  is the implicit estimate of the prob-
ability of failure of the binomial test plan [9].

 hours, 

which is in compliance with the performance specifica-
tion (T0≥40000) for the products. Given that during the test 
time product failure is unlikely, it was decided to conduct 
dependability testing using addition in order to save costs.

Conclusions

PNF estimates for the plan of tests with addition were ex-

amined. For the case of n > 3, estimates  

and  (composite estimate) are more efficient 
in comparison with estimate . The composite 
estimate of PNF  should be used in failure-
free tests. 

For the case of n > 3, testing with the acceptance number 
of failures greater than zero (Q > 0) conducted with addi-
tion allows reducing the number of tested products through 
successful testing of the original sample.

T h e  c o m p o s i t e  e s t i m a t e  o f  M T F 

 is bias-efficient among the 

proposed MTF estimates.

Table 7. Results of failure-free testing per example 3

PNF (failure-free tests with addition)
r=0, k=0, n=4, N=n+k=4+0=4, Q=1

PNF (binomial tests)
r=0, N=n=4, Q = 0

Table 8. Results of tests with one failure per example 3

PNF (failure-free tests with addition)
r=1, k=1, n=4, N=n+k=4+1=5, Q=1

PNF (binomial tests)
r=1, N=n=5, Q = 1
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The obtained composite estimates  and  are of practi-
cal significance in the context of failure-free testing with 
addition.
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