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Abstract. Aim. Dependability simulation of a complex system starts with its structuring, i.e. par-
titioning into components (blocks, units, elements), for which probabilities of failure are known. 
The classical dependability theory uses the concept of structural function that allows ranking 
elements by their importance, which is required for optimal distribution of the resources al-
located to ensuring system dependability. Man-machine systems are structured using an algo-
rithmic description of discrete processes of operation, where the presence of clear boundaries 
between individual operations allows collecting statistical data on the probabilities of error that 
is required for modeling. Algorithmization is complicated in case of man-machine systems with 
continuous human activity, where the absence of clear boundaries between operations pre-
vents the correct assessment of the probability of their correct performance. For that reason, 
the process of operation has to be considered as a single operation, whose correct perform-
ance depends on heterogeneous and interconnected human-machine system-related, techni-
cal, software-specific, managerial and other factors. The simulated system becomes a “black 
box” with unknown structure (output is dependability, inputs are contributing factors), while the 
problem of element ranking typical to the dependability theory comes down to the problem of 
factor ranking. Regression analysis is one of the most popular means of multifactor depend-
ability simulation of man-machine systems. It requires a large quantity of experimental data and 
is not compatible with qualitative factors that are measured by expert methods. The “if – then” 
fuzzy rule is a convenient tool for expert information processing. However, regression analysis 
and fuzzy rules have a common limitation: they require independent input variables, i.e. con-
tributing factors. Fuzzy cognitive maps do not have this restriction. They are a new simulation 
tool that is not yet widely used in the dependability theory. The Aim of the paper is to raise 
awareness of dependability simulation with fuzzy cognitive maps. Method. It is proposed – 
based on the theory of fuzzy cognitive maps – to rank factors that affect system dependability. 
The method is based on the formalization of causal relationships between the contributing fac-
tors and the dependability in the form of a fuzzy cognitive map, i.e. directed graph, whose node 
correspond to the system’s dependability and contributing factors, while the weighted edges 
indicate the magnitude of the factors’ effect on each other and the system’s dependability. The 
rank of a factor is defined as an equivalent of the element’s importance index per Birnbaum, 
which, in the probabilistic dependability theory is calculated based on the structure function. 
Results. Models and algorithms are proposed for calculation of the importance indexes of 
single factors and respective effects that affect system dependability represented with a fuzzy 
cognitive map. The method is exemplified by the dependability and safety of an automobile in 
the “driver-automobile-road” system subject to the driver’s qualification, traffic situation, unit 
costs of operation, operating conditions, maintenance scheduling, quality of maintenance and 
repair, quality of automobile design, quality of operational materials and spare parts, as well as 
storage conditions. Conclusions. The advantages of the method include: a) use of available 
expert information with no collection and processing statistical data; b) capability to take into 
account any quantitative and qualitative factors associated with people, technology, software, 
quality of service, operating conditions, etc.; c) ease of expansion of the number of considered 
factors through the introduction of additional nodes and edges of the cognitive map graph. The 
method can be applied to complex systems with fuzzy structures, whose dependability strongly 
depends on interrelated factors that are measured by means of expert methods.
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1. Introduction

Successful simulation in the context of application tasks is 
largely defined by the choice of mathematics. The probability 
theory, that is at the foundation of the classic dependability 
theory, is poorly adapted to formalizing expert knowledge, 
that may prove to be useful as part of the decision-making 
process.

The Aim of the paper is to raise awareness of depend-
ability simulation with fuzzy cognitive maps. It sets forth 
the primary formulas of the above and further proposes the 
method of ranking of factors that affect system dependability. 
The method is illustrated using the example of simulation 
of dependability and safety of automobiles subject to tech-
nical, human-machine system-related, environmental and 
managerial factors.

2. Structuring: from elements 
to factors

Dependability simulation of a complex system starts 
with its structuring, i.e. partitioning into components 
(blocks, units, elements), for which probabilities of failure 
are known.

The classical dependability theory [1] uses the concept 
of structural (logical) function that associates the logical 
condition of system operability (1, no failure, 0, failure) 
with the respective conditions for its elements. The transition 
from the structure function to the probabilistic dependability 
model is performed according to the rules of probabilistic 
logic calculation [2]. The structural function allows ranking 
elements by their importance, which is required for optimal 
distribution of the resources allocated to ensuring system 
dependability. 

Man-machine systems are structured using the algorith-
mic description of the operating processes [3, 4]. In this 
case, the given data for dependability calculation is the 
probabilities of correct performance of basic, check and 
diagnostic operations. The rules of transition from logical 
algorithmic description of a system in the language of algo-
rithmic algebra by V.M. Glushkov [5] to probabilistic and 
fuzzy dependability models are suggested in [6, 7].

Algorithmic description is a natural method of formali-
zation of systems with discrete processes of operation, e.g. 
automated data processing and control systems, assembly 
lines, etc., where the presence of clear boundaries between 
individual operations allows collecting statistical data on the 
probabilities of errors that is required for modeling.

Algorithmization is complicated in case of man-machine 
systems with continuous human activity that is dominated by 
operations of supervision and decision-making. Examples 
include control systems of the transportation, chemical and 
nuclear industries and other high-risk systems, where human 
errors cause catastrophic consequences.

The absence of clear boundaries between operations 
prevents a correct estimation of the probability of their cor-
rect performance. For that reason the process of operation 

has to be considered as a single operation, whose correct 
performance depends on heterogeneous and interconnected 
human-machine system-related, technical, software-specific, 
managerial and other factors. The simulated system is a 
“black box” with unknown structure: output is dependability, 
inputs are contributing factors. In this case, the conventional 
problem of the dependability theory – the ranking of ele-
ments – becomes a problem of factor ranking. For instance, 
in [8] it is noted, that the difficulty of taking into account the 
contributing factors makes it impossible to accurately predict 
the probability of failure, which undermines the confidence 
in the dependability calculations. 

Regression analysis is the most popular means of mul-
tifactor dependability simulation of man-machine systems 
(see e.g. [9]). It requires a large quantity of experimental 
data and is not compatible with qualitative factors that are 
measured by expert methods. The “if – then” fuzzy rules 
are a convenient tool for expert information processing 
[10]. Regression analysis and fuzzy rules have a common 
limitation: they require independent input variables, i.e. 
contributing factors. Fuzzy cognitive maps (FCM) [10] do 
not have this restriction. They are a new simulation tool that 
is not yet widely used in the dependability theory. 

Set forth below are the primary FCM formulas and 
proposed method of ranking the factors that affect system 
dependability and safety. The method is illustrated with the 
“driver-automobile-road” system.

3. Primary concepts and formulas

3.1. General observations

FCM were introduced by B. Kosko [11] as a generaliza-
tion of R. Axelrod’s binary cognitive maps [12], intended 
for simulating the dynamics of the causal relationships 

Figure 1 – An example of a fuzzy cognitive map.
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in sociopolitical systems. FCM is a directed graph with 
weighted edges, of which an example is shown in Fig. 1. 
Graph nodes Ci called concepts correspond to the input 
and output variables that are taken into consideration in the 
model. Weighted edges of the graph reflect the magnitude of 
the effect wij of the changes of one variable Ci on the changes 
of another variable Cj.

The term “cognitive” implies, that the initial data for 
simulation consists of subjective opinions of an expert 
expressed as, e.g. “increases” or “decreases”, for instance: 
“increasing Ci causes the decrease of Cj

 ”. In binary cogni-
tive maps [12], an “increase” is estimated as “+1”, while a 
“decrease” is estimated as “–1”.

The term “fuzzy” implies that FCM [11] use various 
levels of “increase” and “decrease”. They are defined by 
numbers from the intervals [0, 1] and [–1, 0], which corre-
sponds to the terms “weak”, “average”, “strong”, etc. from 
the fuzzy set theory [10].

From the point of view of the identification theory 
[13, 14] that involves restoring patterns based on experi-
mental data, FCM is an approximator of the “inputs/outputs” 
dependence with interrelated outputs. As any approxima-
tor, e.g. regression, fuzzy rules, neural network, etc., FCM 
contains configurable parameters that are to be estimated 
through minimization of the disparity between the model and 
experimental output values. If the experimental data “inputs-
outputs” is not available, the quality of the whole model 
depends on the expert’s qualification. The art of simulation 
consists in compensating for the missing experimental data 
through high quality of expert estimates.

It would be relevant comparing FCM and Markovian 
chains (processes) familiar to the dependability experts. 
Both types of models are weighted directed graphs. The 
basic difference between FCM and Markovian dependability 
models consists in the fundamental difference between the 
fuzzy logic (causes) and probability theory (effects) shown in 
Fig. 2: the Markovian models reflect the dynamics of system 
state probabilities accounting for failures and restorations; 
FCM simulate the level dynamics of interrelated factors that 
cause failures and affect their probability.

3.2. Concepts

Let C={C1, C2, …, Cn} be a known set of concepts, i.e. 
variables used in the model. According to [11], each concept 
Ci∈C is evaluated with value Ai∈[0,1], that defines the level 
of the concept and is based on expert opinion. Value Ai is to 
be obtained as follows.

We will assume each concept Ci∈C to be a linguistic 
variable [10], that is estimated with value xi on a universal 
set, i.e. interval , where  ( ) is the lower (upper) 
boundary. We will estimate concept Ci∈C with the use of 
the fuzzy terms “perfection of concept Ci

 “, that is denoted 
as PCi and is a fuzzy set

,

where π(xi) is the membership function of variable xi in 
the notion of “perfection of concept Ci”. Using this func-
tion, each absolute estimate  is associated with 

Figure 2 – Interrelation between the probability theory and fuzzy logic in dependability estimation.

a)                                                                        b)                                                                        c) 
Figure 3 – Membership functions for fuzzy perfection.
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number Ai=π(xi)∈[0,1], that characterizes the proximity of 
the value of concept Ci∈C to a certain ideal: 0 is the lowest 
perfection, 1 is the highest perfection. “Fuzzy perfection” 
is synonymous with “fuzzy correctness”, for which the 
membership functions were considered in [15]. Possible 
fuzzy boundaries between perfect and non-perfect values 
of variable x are shown in Fig. 3, where, as the value of x 
grows, the following transitions take place:

a) “non-perfect” (1) – “perfect” (0),
b) “perfect” (1) – “non-perfect” (0),
с) “non-perfect” (0) – “perfect” (1) – “non-perfect” (0).

3.3. Associations between concepts

The weight wij of the edge that connects concepts Ci and Cj 
indicates the magnitude of the effect of Ci on Cj. Let concepts 
Ci and Cj be characterized by variables xi and xj, while – as 
the result of the experiment – dependence xj = φ(xi) was 
achieved. Then, the weight wij is defined as the derivative 
wij = dxi/dxj that can have three forms (Fig. 4):

wij > 0, if the increase (decrease) of value xi causes the 
increase (decrease) of value xj (positive effect of Ci on Cj);

wij > 0 if the increase (decrease) of value xi causes 
the decrease (increase) of value xj (negative effect of Ci 
on Cj);

wij = 0 if value xj does not depend on value xi (no effect 
Ci on Cj).

The magnitude of effect (wij) is estimated expertly by 
means of linguistic terms and thermometer scale (Table 1). 
If several expert opinions are taken into consideration, the 
value wij is estimated as the weighted average:

,

where  is the estimate of the magnitude of the ef-
fect of the p-th expert; αp is the weight of the p-th expert, 
p = 1, 2, …, m; m is the number of experts.

In order to reduce the subjectivity of expert estimates, the 
method of the least effect proposed in [16] can be used.

3.4. Recurrence equations

According to [11, 17], the dynamics of concept values 
variation in FCM are defined by formula

 , k = 0, 1, 2, … . (1)

where  is the value of concept Ci at step k + 1;  and 
 is the value of concept Ci and Cj at step k respectively, wji 

is the magnitude of the effect of concept Cj on concept Ci; 
c is the parameter that takes into consideration the history, 
i.e. the contribution of the concept’s value at the preceding 
step, с∈[0,1]; f is the threshold function, due to which the 
value of the concept does not exceed one.

In this paper, it is assumed that c = 1, while for the 
threshold function is used the positive part of the hyperbolic 
tangent (Fig. 5):

    .

Figure 5 – Threshold function.

3.5. Matrix model

The recurrence equation (1) can be represented in matrix 
form

Figure 4 – Types of effects between concepts.

Table 1. Methods of estimating the magnitude of an 
effect.

Thermom-
eter scale Linguistic estimations Quantitative 

estimations 

Positive maximum
Positive above average 

Positive average 
Positive under average 

Not available 
Negative under average 

Negative average
Negative above average

Negative maximum 

1
0,75
0,5
0,25

0
-0,25
-0,5
-0,75

-1
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, k = 0, 1, 2, … , (2)

where Ak+1, Ak k = 0, 1, 2, … are (1×n) state vectors of 
FCM, whose elements define the values of concept at steps 
k+1 and k respectively;

  (3)

is the (n×n) matrix of the magnitude of mutual ef-
fects of concepts Ci, in which diagonal elements are 
equal to zero.

If instead of matrix (3) an (n×n) matrix is used,

 , (4)

in which all elements on the main diagonal are equal to 
parameter с∈[0,1], then we will write formula (2) as

 , k = 0, 1, 2, … , (5)

that is similar to the recurrence equation for a Markovian 
chain, if we take f(x) = x. The fundamental difference con-
sists in the fact that a Markovian chain simulates the dynam-
ics of event probability variation, while FCM simulates the 
dynamics of the level of causes, i.e. factors that lead to such 
states or events (see Fig. 2).

The initial state of an FCM is defined by vector

 , (6)

whose elements reflect the values of concepts at step 
k = 0. As the result of interaction between concepts FCM 
enters the steady mode, that corresponds with one of the 
types of stability [18].

4. Ranking of concepts

The allocation of system dependability resources is 
based on quantitative estimates (ranks) of its elements’ 
importance. In the statistical dependability theory, Birn-
baum’s importance index of an element is the most widely 
used [1]. It is defined based on the system’s dependability 
function

 , (7)

where PS and Pi are the system’s probability of no-failure 
and its i-the element respectively.

The first derivative in (7) is the importance index of the 
system’s i-th element according to Birnbaum, that is calcu-
lated as follows [1]:

  (8)

The second derivative in (7) is the importance index of 
the joint effect of the i-th and j-th elements (joint reliability 
importance), that was introduced in [19, 20].

In our case the elements of the model include the input 
concepts, i.e. the factors that affect the output level of system 
dependability. That explains the requirement to calculate the 
importance indices of FCM concepts.

4.1. Definition of importance indices

In the set of concepts C={C1, C2, …, Cn} we will assume 
the following:

Cn is the output concept that defines the level of system 
dependability and is estimated with number An∈[0,1];

C1, C2, …, Cn-1 are the input concepts that correspond with 
the interconnected factors affecting system dependability 
and estimated by levels Ai∈[0,1], i =1, …, n – 1.

The value of concept Cn at the l-th step is the function of 
the elements of vector (6), i.e.

 . (9)

It is assumed that  is the value of concept Cn in the 
steady state, i.e. at such step l, when  is close to . For-
mula (9) is equivalent to (7), which allows proceeding to the 
definition of concept ranks based on derivatives.

Let I(Cj) be the importance index of concept Cj, while 
I(Cj,Ck) be the index of combined importance of concepts 
Cj and Ck. Following (8) and [19, 20], let us identify such 
importance indices as:

 , (10)

, (11)

where F(1 j,0) is the value of function (9), when 
 are equal to zero; F(0) is the value of function 

(9), when all arguments are equal to zero (it is assumed 
that F(0) = 0); F(1j,1k,0) is the value of function (9), 
when , while all the other arguments are 
equal to zero.

Note. The zero values of input concepts (except one in 
(10) and two in (11) that are equal to one) are selected in 
order to eliminate the possibility of them having an effect 
on the output concept through transitive connections.
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4.2. Algorithm of importance index 
calculation

Step 1. Specifying the initial vector (6). For importance 
index I(Cj), the initial vector is specified as follows

 , (12)

while for importance index I(Cj, Ck) it is specified as

 . (13)

Step 2. Using recurrence equation (5), finding the FCM 
state vector

  (14)

in steady-state operating conditions, i.e. at such step l, 
whereas , where ε is a small positive number, 
i = 1, 2, …, n.

Step 3. Elements  of vector (14) obtained under initial 
vectors (12) and (13) respectively shall be considered to be 
importance indices I(Cj) and I(Cj, Ck).

5. An example

5.1. Concepts and effects

Let us examine the automobile dependability and safety 
model in the “driver-automobile-road” system. The fuzzy 
cognitive map of the system is shown in Fig. 6, where the 
concepts have the following contents: C1 is the driver’s 

Table 2. Values of concepts in steady state for various initial vectors.

Step A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

1
…

3040

1
…

0,022

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,187

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,68579
1
…
774

0
…

0,000

1
…

0,044

0
…

0,000

0
…

0,365

0
…

0,747

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,94834
1
…

3717

0
…

0,000

0
…

0,000

1
…

0,020

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,22707
1
…

3014

0
…

0,000

0
…

0,000

0
…

0,000

1
…

0,022

0
…

0,335

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,79115
1
…

5324

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

1
…

0,017

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,33491
1
…

3196

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,186

1
…

0,022

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,68912
1
…

4953

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

1
…

0,017

0
…

0,000

0
…

0,000

0
…

0,30912
1
…

2742

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,321

0
…

0,000

0
…

0,000

1
…

0,023

0
…

0,000

0
…

0,77418
1
…

3086

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

0
…

0,000

1
…

0,022

0
…

0,18667

Table 3. Importance indices of combined effect of factors.

Concepts C2 C3 C4 C5 C6 C7 C8 C9

C1 0,949 0,686 0,801 0,686 0,730 0,335 0,786 0,255
C2 – 0,948 0,948 0,948 0,950 0,949 0,950 0,948
C3 – – 0,791 0,335 0,689 0,309 0,774 0,254
C4 – – – 0,791 0,803 0,703 0,823 0,782
C5 – – – – 0,689 0,309 0,774 0,187
C6 – – – – – 0,356 0,788 0,294
C7 – – – – – – 0,309 0,323
C8 – – – – – – – 0,763
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qualification, C2 is the road conditions, C3 is the unit costs of 
operation, C4 is the operating conditions, C5 is the frequency 
of maintenance operations, C6 is the quality of service and 
repair, C7 is the quality of automobile’s design, C8 is the 
quality of operational materials and spare parts, C9 is the 
storage conditions, C10 is the dependability and safety of 
the automobile.

Figure 6 – Fuzzy cognitive map for dependability and safety 
estimation.

Matrix W (4) with expert estimates of the magnitude of 
effect, that assumes that c = 1, is as follows

.

5.2. Importance indices of concepts

Table 2 contains nine pairs of vectors associated with the 
calculation of the importance indices of concepts C1, …, C9. 
Each pair contains the initial vector (12) and vector (14) in 
steady-state operating conditions. The last element of the 
second vector in each pair corresponds to the importance 
index of the concept, i.e. I(C1) = 0.686. The last column 
in Table 2 shows the step-by-step change of the level of 
dependability and safety of an automobile (A10) in case of 
activation of one of the factors (Ai, i = 1, …, 9). The diagram 
of the importance indices of concepts is shown in Figure 7. 
The results of calculation of the importance indices of the 
combined effect of concepts are shown in Table 3, i.e. 
I(C1, C2) = 0.949.

It should be noted that concept C7 can be detailed subjects 
to the conclusions of [21].

Figure 7 – Diagram of importance indices of factors.

6. Conclusion

The paper proposes and demonstrates with an example 
of a man-machine system a method of ranking of fac-
tors that affect its dependability. The method is based 
on the formalization of causal relationships between the 
contributing factors and the dependability in the form of 
a fuzzy cognitive map, i.e. directed graph, whose nodes 
correspond to the system dependability and contributing 
factors, while the weighted edges indicate the magnitude 
of the factors’ effect on each other and the system’s de-
pendability. 

The proposed method may be regarded as an equiva-
lent to Birnbaum’s ranking of system components in the 
probabilistic dependability theory. The advantages of the 
method include:

• use of available expert information with no collection 
and processing of statistical data;

• capability to take into consideration any qualitative 
and qualitative factors associated with people, technology, 
software, quality of service, operating conditions, etc.; In 
particular, individual concepts can characterize various types 
of redundancy (structural, algorithmic, etc.), that are used 
to improve dependability;

• easily scalable number of considered factors through the 
introduction of new nodes and edges of a directed graph.

The method can be applied to complex systems with 
fuzzy structures, whose dependability strongly depends on 
interrelated factors that are measured by means of expert 
methods. 
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