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Abstract. It is common practice to estimate the values of dependability indicators (point esti-
mation). Normally, the probability of no-failure (PNF) is used as the dependability indicator. Due 
to economic reasons, determinative dependability tests of highly dependable and costly prod-
ucts involve minimal numbers of products, expecting failure-free testing (acceptance number 
Q  =  0) or testing with one failure (Q  =  1), thus minimizing the number of tested products. The 
latter case is most interesting. By selecting specific values of the acceptance number and 
number of tested products, the tester performs a preliminary estimation of the planned PNF, 
while selecting Q = 1 the tester minimizes the risks caused by an unlikely random failure. How-
ever, as the value Q grows, the number of tested products does so as well, which makes the 
testing costly. That is why the reduction of the number of products tested for dependability is 
of paramount importance. Preparation of the plan of tests with addition. We will consider 
binomial tests (original sample) with addition of one product (oversampling) to testing in case 
of failure of any of the initially submitted products. Testing ends when all submitted products 
have been tested with any outcome (original sampling and oversampling). Hereinafter it is un-
derstood that the testing time is identical for all products. Testing with the acceptance number 
of failures greater than zero (Q  >  0) conducted with addition allows reducing the number of 
tested products through successful testing of the original sample. The Aim of the paper con-
sists in preparing and examining PNF estimates for the plan of tests with addition. Methods of 
research of dependability indicator estimates. Efficient estimation is based on the integral 
approach formulated in [6,  8-10]. The integrative approach is based on the formulation of the 
rule of efficient estimate selection specified on the vertical sum of absolute (or relative) biases 
of estimates selected out of a certain set based on the distribution law parameter, where, in 
our case, n is the number of products initially submitted to testing. Criterion of selection 
of efficient estimation for PNF. The criterion of selection of an efficient estimate of the 
probability of failure (or PNF) at a set of estimates is based on the total square of absolute 
(or relative) bias of the mathematical expectation of estimates E (n,k,m) from probability of 
failure p for all possible values of p, n. Conclusions. PNF estimates for the plan of tests with 
addition was prepared and examined. For the case n  >  3, the PNF estimate (n,k,m) =1–
(n,k,m)=1–(k+m)/(n+k) in comparison with the implicit estimate (n,k,m) =1– (n,k,m) is bias 
efficient. Testing with the acceptance number of failures greater than zero (Q  >  0) conducted 
with addition allows reducing the number of tested products through successful testing of the 
original sample. Estimates ,  and  are unbiassed and, as a consequence, bias efficient 
for the cases n  =  2 and n  =  3 respectively.
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Introduction

It is common practice to estimate the values of depend-
ability indicators (point estimation). Normally, the prob-
ability of no-failure (PNF) is used as the dependability 
indicator. Due to economic considerations, determinative 
dependability tests of highly dependable and costly products 
involve minimal numbers of products, expecting failure-free 
testing (acceptance number Q=0) or testing with one fail-
ure (Q=1), thus minimizing the number of tested products. 
The latter case is most interesting. By selecting specific 
values of the acceptance number Q and number of tested 
products, the tester performs a preliminary estimation of 
the planned PNF, while selecting Q=1 the tester minimizes 
the risks caused by an unlikely random failure. However, 
as the value Q grows, the number of tested products does 
so as well, which makes the testing costly. That is why the 
reduction of the number of products tested for dependability 
is of paramount importance.

Preparation of the plan of tests 
with addition

We will consider binomial tests (original sample) [1, 2] 
with addition of one product (oversampling) to testing in case 
of failure of any of the initially submitted products. Testing 
ends when all submitted products have been tested with any 
outcome (original sampling and oversampling). Hereinafter it is 
understood that the testing time is identical for all products. 

Testing with the acceptance number of failure greater 
than zero (Q>0) conducted with addition allows reducing 
the number of tested products through successful testing of 
the original sample.

The Aim of the paper

The aim of the paper consists in preparing and examining 
PNF estimates for the plan of tests with addition.

Preparation and examination of PNF 
estimates for the plan of tests with 
addition

Let n be the number of tested products of the same type 
initially submitted to testing, and let R = r be the number 
of failed products that includes k failures from n products 
initially submitted to testing and m failures from k prod-
ucts repeatedly submitted to testing, i.e. r=k+m. Then, the 
number of tested products will be N=n+k. Let failures be 
independent events, then the probability of r failures during 
tests (hereinafter, Pn(R=r)) is easily expressed with a gen-
erating function. Let us apply properties of the generating 
function [3].

The generating function (hereinafter, ψR(z)) is a mathemat-
ical expectation of an exponential function of type zR, i.e. for 

the test plan with addition [3]: 
.

For the case when the original sample consists of one 
product, the generating function will be [3]:

Then, for the case when original sample consists of n 
products, the generating function will be [3]: 

The probability of zero failures during testing of the 
original sample with volume n [3]: 

The mathematical expectation of the random value R can 
be calculated through the expression [3]:  
is the first derivative. 

And the probability of getting exactly r failures can be 
calculated through the expression [3]: 

Let us construct the derivative of the generating function:

out of which follows that the average number of failures 
during tests will be 

Then, the probability of one failure during tests can be 
calculated by the formula:

The construction of derivatives of the higher orders is very 
complicated, and therefore it is not demonstrated in this paper.

The obtained results are not the best option for calcula-
tions, therefore, let us construct a more convenient formula 
for the probability of exactly r failures during tests that 
is obtained from the following construction procedure (

):

 

,

where q=1–p, p is the probability of failure,  is the 
number of k combinations of n elements. 

;

;

;
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;

;

 … 

 … 

.

From the construction logic we obtain the required for-
mula for the probability of exactly r failures:

wherer = k + m = 0, 1, 2, …, 2n; k = 0, 1, 2, …, n; 
m : m + k = r, m ≤ k.

Through the calculation of probability Pn(k=x,m=y)=Pn(k=x)
Pn(m=y), where x, y = 0, 1, 2, ..., n and Pn(R=r) it is easy 
to obtain the probability function of the plan of tests with 
addition: 

	
,	 (1)

which on the entire set of events r=k+m=0,1,2,…, 2n 
should be equal to one. Let us verify this fact.

The probability function on the entire set of events can be 
represented as the sum of the products of each component of 
the primary polynomial by polynomial, where polynomials 
have binominal coefficients:

 

or:

An expression for ER can also be found in a simpler 
way. The average number of tested products during tests 
with addition consists of the number of products that were 
originally submitted to testing and the average number of 
failed products that were originally submitted to testing, 
i.e. N=n+np. Then, the average number of failed products 
during tests with addition will be:

Let us note that the probability Pn(k,m) defines the test 
results (k,m), therefore, as an estimate of parameter p it is 
recommended to choose an estimate that defines the maxi-
mum probability Pn(k,m).

Let us solve the classical problem of identification of 
function maximum 

with respect to p. For that, let us take the logarithm for 
the function , let us take the derivative with 
respect to the variable p, set the result to zero and solve an 
equation with respect to variable p. The resulting estimate 

 determines the maximum of 
function . Let us consider the properties of the 
resulting estimate  and the PNF estimate, as 
a consequence

.

Let , then for various  the fol-
lowing inequality will be true

	 ,	 (2)

i.e. the dependability of the controlled batch of products 
(PNF: ) according to the test of a 
sample, in which the number of products failed during test 
k1 was greater than in the sample of a comparable batch k2 
with the same number r of failures will always be higher 

 >  than in a comparable batch of prod-
ucts. In other words, when comparing the results of two 
finally formed samples (with equal numbers of failures), 
the priority in dependability is given to the products, whose 
failures were primarily within the original sample, and not 
oversampling. In this case, oversampling enables remedia-
tion after unsuccessful initial tests. This is the advantage of 
the test plan with addition. 
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Unbiassed estimate calculation 

Let us determinate the mathematical expectation of the 
estimate  : 

It can be proved that estimate  in general is 
biased. To prove that, a particular case will suffice. 

Let us determine the mathematical expectation of estimate 
: 

Therefore, estimate  is biased. Esti-
mate  can be presented in the following form:

By equating the mathematical expectation of unknown 
estimate  to parameter p, it is easy to obtain 
an unbiased estimate of probability of failure  for the case 

 are unknown probabilities: 

;

An unbiased estimate is an indicator function, i.e. in 
case of failures estimate  is equal to one, if otherwise, 
this estimate is equal to zero. The option when n=1 is 
practically not interesting, because it coincides with the 
binominal plan, therefore, it will not be considered in this 
paper.

Let us determine the mathematical expectation for 
 

Therefore, estimate  is biased. Esti-
mate (n=2) can be presented as: 

Let us note that for the results  
and  the dependability of the 
controlled batch of products, in which some products in 
the sample failed during initial test, is higher than in the 
products whose failures occurred during repeated test 
and with the same number of failures. That corresponds 
to the property of estimate , expressed by 
formula (2). 

It is easy to obtain an unbiased estimate  for param-
eter p:

For this purpose the mathematical expectation of the 
supposed unbiased estimate with unknown probabilities pik 
must be equated to parameter p and necessary transforma-
tions must be carried out:
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For this equation to be true, the coefficients with differ-
ent degrees of parameter p must be equal to zero, with the 
exception of the first degree where the coefficient must be 
equal to one: 

This heterogeneous system of linear equations is always 
resolvable and has an infinite set of similar solutions (the 
number of variables is greater than the number of equa-
tions): 

Let us note that the failure probabilities must satisfy the 
slack inequality . Let us also point out that, in prac-
tice, for two controlled batches of products with the same 
number of failures in the generated samples for the results 

 and  the dependability of the first control-
led batch of products , for which some 
products in the original sample and oversampling failed only 
during initial tests k=2, m=0, is lower than for products of 
the second controlled batch , where 
failures occurred during repeated tests in oversampling as 
well. This result contradicts the property (see formula (2)) 
of the biased estimate ) and 
makes it difficult to choose an efficient estimate. 

Further, in order to avoid contradictions when looking 
for new estimates of the failure probability, it is neces-
sary to take into account that the values of estimates for 
the same number of failures do not depend on the fact, 
in which sample (original or additional) the failures 
occurred. Therefore, this principle of looking for new 
estimates of the failure probability  can be pre-
sented as follows:

	 	 (3)

i.e. we reject the property estimate  expressed by for-
mula (2). 

Similarly to the above reasoning, let us demonstrate the 
method of finding new estimates: 

In order for this equality to be true, the coefficients with 
different degrees should be equal to zero, with the excep-
tion of the first degree, where the coefficient should be 
equal to one: 

;

This heterogeneous system of linear equations is always 
solvable and has only one solution (the number of variables 
2*n is equal to the rank (number of linearly independent 
equations) [5]), which will be estimate !

Similarly to the previous example (case n=2), let 
us determine the mathematical expectation of estimate 

: 

After all the required manipulations (they are not present-
ed due to complicated expressions) the following result will 

be obtained: estimate  is biased. Estimate 

 is presented as follows:
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Let us determine an unbiased estimate of failure prob-
ability for the case n=3 ( ), using the principle expressed 
by the formula (3). The probability values of this estimate 
are determined through its mathematical expectation that 
should be equal to the estimated parameter p:

;

;

A similar search for unbiased estimates for cases n=4 and 
n=5 was unsuccessful, because the obtained results of the 
probability values exceeded 1, which is not acceptable. There-
fore, for n>3 the construction of an unbiased estimate accord-
ing to the rule  
is problematic!

Let us introduce a new term: let the estimate of failure 
probability (hereinafter, ) center the probability function 

 relative to the limits of its values. This means that 

intervals [0; ] and [ ;1] of values of such estimates with 
the probability 0.5 cover the estimated parameter p. Such 
estimates will be called centered. Let us note that for some 
test plans centered estimates are close to efficient estimates 
[6, 8]. In this case, the centered estimate v



 is calculated 
from the following expression (replacing p with v



 in the 
formula (1)):

For the solution for this equation to exist be unique, 
it is necessary to verify the monotonicity of  with 

respect to variable p [1, 7]. It should be reminded that 
.

Taking thee derivative of  to the parameter p, the 
results will be the following:

Due to the complexity of the obtained expression, it is 
not possible to prove or dispose of the monotonicity of 

. However, it is possible for the most interesting cases as 

r=0, r=1 и r=2. Let us consider these cases:



Dependability, vol. 19 no.3, 2019. Structural dependability. Theory and practice

18

Therefore, for cases when r=0, r=1, r=2 probability 
function 

 
monotonically decreases with the increasing 

parameter p and, therefore, the centered estimate  of pa-
rameter p for the test plan with addition is unique.

The centered estimate defines the lower (upper) confi-
dence boundary (hereinafter referred to as LCB (UCB)) of 
the interval of the unknown parameter p with the confidence 
probability γ=0,5 or significance level α=1–γ=0,5. On the 
other hand, any estimate of LCB (UCB) of the interval of 
unknown parameter p can be interpreted as a point estimate 
of parameter p with a strong bias (downward bias is for LCB 
and upward bias is for UCB). Unidirectional LCB (hereinaf-
ter referred to as ) and UCB (hereinafter referred to as 
) of the interval with unknown parameter p with confidence 
probability γ=1–α are calculated in accordance with the 
following formulas:

The boundaries of the central confidence interval are 
calculated in accordance with the following formulas [4]:

Tables 1, 2 and 3 show the values of LCB, UCB of pa-
rameter p and values of the centered estimate  for the most 
realistic scopes of tests and failure events. 

Let us formulate a criterion for choosing an efficient es-
timate of failure probability (or PNF) and construct – on the 
basis of the formulated criterion – an improved (and biased) 
estimate of failure probability (and, therefore, the estimate of 
the PNF) for the test plan with addition for n>3 and choose 
the efficient one among the proposed estimates.

Research methods for estimating 
dependability indicators 

The search for efficient estimates is based on the integral 
approach described in [6, 8-10]. The integral approach is 
based on construction of the rule for choosing an efficient 
estimate  specified on the sum of the absolute 
(or relative) bias of estimates of , selected from 
a certain set, from the parameter of the distribution law, 
where in this case n is the number of products initially put 
up for testing.

Criterion for choosing and efficient 
estimate for PNF 

The criterion for choosing an efficient estimate of the 
probability of failure (or PNF) over the set of estimates of 

 is based on the total square of absolute (or rela-
tive) biases of mathematical expectations of estimates of  
E  from the probability of p failure for all possible 
valuesp, n.

In order to select an efficient estimate of the probability 
of failure (or PNF) the concept of an absolutely efficient 
estimate by bias and parameter p variation within  

Table 1. The values of LCB of parameter p for different scopes of tests (in horizontal direction) and failure 
events (in vertical direction) if γ=0,8

n 1 2 3 4 5 6 7 8
k=0 m=0 0.199 0.105 0.071 0.054 0.043 0.036 0.031 0.027
k=1 m=0 0.445 0.287 0.212 0.168 0.139 0.119 0.104 0.092
k=1 m=1 1 0.445 0.287 0.212 0.168 0.139 0.119 0.104

Table 2. The values of UCB of parameter p for different scopes of tests (in horizontal direction) and failure 
events (in vertical direction) if a=0,2

n 1 2 3 4 5 6 7 8
k=0 m=0 0.800 0.552 0.415 0.331 0.275 0.235 0.205 0.182
k=1 m=0 0.894 0.710 0.582 0.488 0.422 0.370 0.330 0.297
k=1 m=1 1 0.894 0.710 0.582 0.488 0.422 0.370 0.330

Table 3. The values of the centered estimate  for different scopes of tests (in horizontal direction) and failure 
events (in vertical direction) 

n 1 2 3 4 5 6 7 8
k=0 m=0 0.292 0.206 0.159 0.129 0.108 0.094 0.082 0.074
k=1 m=0 0.707 0.5 0.384 0.313 0.264 0.226 0.201 0.179
k=1 m=1 1 0.707 0.5 0.384 0.313 0.264 0.226 0.201
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are required. In order to obtain the final result, the functional 
(hereinafter referred to as L( ) on the limited set 

 is constructed [6, 8–10] as a criterion 
for efficient estimate :

	  	 (4)

Estimate  that minimizes the functional  
L( ) on a given set of estimates is an efficient bias 
estimate on a given set of biased estimates. Among estimates 
that similarly minimize functional L( ), an estimate 
that has the minimal mean-square deviation (classical defini-
tion of an efficient estimate [1]) is to be selected. We will 
call this estimate more efficient in comparison with the 
selected ones.

Selecting estimates with minimal deviation involves con-
structing a functional (hereinafter referred to as D(
) by summarizing mathematical expectations of squares of 
relative deviations of estimates of  from parameter 
p for all possible values p, n [6, 8-10]:

	 	 (5)

An estimate that provides zero to functional L(
)=0 (unbiased estimate) and minimizes functional D(

) will be called absolutely biased.
Let us limit the scope tests as , which is the cost 

limit for highly reliable and complicated products. Then, 
formula (4) will be as follows: 

And formula (5) will be presented as: 

Table 4 shows the results of the substitution into func-
tional L( ) and D( ) in accordance with 
formulas (4) and (5) of the following estimates of failure 
probability : . The calculations were carried 
out with the step of dp = 10-3.

Table 4 shows that for options n>3 estimate  has a mini-
mal bias compared to estimate . ,  and  estimates are 
unbiased and, as a result, are efficient for options n=2 and 
n=3 respectively. 

Table 4 shows that estimate  has a slight advantage over 
estimate  as regards minimal deviation of its values from 

parameter p. Therefore, the estimate  
can be taken as a desired efficient bias estimate among the 
proposed ones.

Let us note that the variation of the step of summation 
changes the functional result, but does not change the result 
of estimates comparison.

Example. Products are part of a redundant piece of 
equipment. It is required to make a point estimate of PNF 
products according to the binominal reliability tests. While 
planning determinative dependability tests, the tester, 
when calculating sample volume (n=6), took into account 
only one failure (Q=1), minimizing the risk of the improb-
able unpredictable failure. In this case, the predicted PNF 
value was  that corresponds to the 
requirements of the technical specifications (PNF should 
be at least 0.83) for the product. Given that during tests the 
failure of product is unlikely, it was decided to carry out the 
dependability tests with addition to reduce the costs. Dur-
ing the test two outcomes are possible: no failure and one 
failure (as planned). In case of no failure there is no need 
for oversampling. Let us consider these options: 

1) No-failure tests. No-failure tests with addition: 

One-sided LCB of PNF as   
was (see Table 2) 

Binominal tests with one failure: 

.

One-sided LCB of PNF as  (calcu-
lated according to the Clopper-Pearson equation [2]) was 

.

2) Tests with one failure. Tests with addition and with 
one failure: 

Table 4. Results of substitution of the proposed estimates of failure probability into functionals L( ) and 
D( )

Functional  (n > 3)

L( ) 2.6∙10-33 2.6∙10-33 5.1∙10-33 2∙10-4 1.51∙10-3

D( ) 0.0687 0.0418 0.0418 0.0187 0.0164
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One-sided LCB of PNF as  was 
(see Table 2) 

B i n o m i n a l  t e s t s  w i t h  o n e  f a i l u r e : 

One-sided LCB of PNF as  (calcu-
lated according to the Clopper-Pearson equation [2]) was 

Conclusions

PNF estimates for the plan of tests with addition was pre-
pared and examined. For the case of n>3, the PNF estimate 

 in compari-
son with the implicit estimate  is 
bias efficient. 

Testing with the acceptance number of failure greater 
than zero (Q>0) conducted with addition allows reducing 
the number of tested products through successful testing of 
the original sample.

Estimates  are unbiased and, as a consequence, 
bias efficient for the cases n=2 and n=3 respectively.
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