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Abstract. The Aim of this paper is to increase the power of statistical tests through their joint 
application to reduce the requirement for the size of the test sample. Methods. It is proposed 
to combine classical statistical tests, i.e. chi square, Cramγr-von Mises and Shapiro-Wilk by 
means of using equivalent artificial neurons. Each neuron compares the input statistics with a 
precomputed threshold and has two output states. That allows obtaining three bits of binary 
output code of a network of three artificial neurons. Results. It is shown that each of such cri-
teria on small samples of biometric data produces high values of errors of the first and second 
kind in the process of normality hypothesis testing. Neural network integration of three tests 
under consideration enables a significant reduction of the probabilities of errors of the first and 
second kind. The paper sets forth the results of neural network integration of pairs, as well as 
triples of statistical tests under consideration. Conclusions. Expected probabilities of errors of 
the first and second kind are predicted for neural network integrations of 10 and 30 classical 
statistical tests for small samples that contain 21 tests. An important element of the prediction 
process is the symmetrization of the problem, when the probabilities of errors of the first and 
second kind are made identical and averaged out. Coefficient modules of pair correlation of 
output states are averaged out as well by means of artificial neuron adders. Only in this case 
the connection between the number of integrated tests and the expected probabilities of errors 
of the first and second kind becomes linear in logarithmic coordinates. 
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The problem of control of the data 
distribution law of small samples 

The problems of ensuring the reliability of unique criti-
cal systems [1, 2] are multifaceted and can be solved only 
through a set of organizational and technical measures. 
These problems are especially prominent in neural network 
biometrics. Each of us has a unique biometric image that is 
to be transformed into a cryptographic key or long access 
password generated through random symbols. The unique-
ness of the transformation is enabled by means of neural 
network learning, while the learning sample has a close to 
normal multidimensional data distribution law. The problem 
is that learning samples are small. In particular, the standard 
learning algorithm [3] is able to solve the task on samples 
of 20 examples, if this sample is obtained correctly and has 
no outliers (gross errors).

In cases of large biometrics data samples (200 tests and 
more) it is not difficult to test the hypothesis of normal 
distribution. The chi square criterion or any other statistical 
criterion can be used [4]. One of the problems of biometrics 
[5] is that its users do not wish to provide to an automatic 
neural network learning machine [3] 200 and more instances 
of their biometric image. Users feel satisfied having submit-
ted a learning sample consisting of 10 to 20 examples of 
their unique biometric image, for example, a handwritten 
password or voice password. Users perceive negatively the 
requirements to present more than 20 examples.

The situation is similar in botany, biology, and medicine. 
A plan breeder or a biologist is not able to quickly get a 
sample of 200 animals (plant specimens) with necessary 
rare characteristics. A sufficient sample for correct statistical 
estimation can be obtained after a long period of time by 
selecting and consolidating the desired rare characteristics 
over several generations.

There is a similar situation in medicine. Large samples 
are required to test statistical hypotheses. The subject 
matter of statistical processing of small samples is very 
popular, but the well-known recommendations [6, 7] do not 
significantly improve the situation. As a rule, improvements 
are achieved through the application of several statistical 
criteria [8].

An attempt could be made to enhance the known statisti-
cal criteria [9], but this does not result in major improve-
ments. As a rule, new statistical criteria or variants of earlier 
criteria individually provide poor results.

The main idea of this paper is the neural network integra-
tion of standard statistical criteria [4, 10, 11]. The progress 
achieved by the Russian neural network biometrics is very 
significant. Regulators of the Russian information security 
market have developed the GOST R 52633.xx Russian 
national series of standards that regulate a number of 
tough requirements for neural network biometrics. In this 
paper we will actually attempt to apply the well-developed 
mathematical techniques of neural network biometrics to 
new subject areas. At the same time, we will try to show 
that the very tough requirements of the Russian informa-

tion security regulators for the probability of error of the 
first and second kind can be fulfilled in other subject areas 
through the implementation of the primary recommenda-
tions of the GOST R 52633.xx series of neural network 
biometrics standards. 

Synthesis and adjustment of the chi 
square neuron with 5 inputs

When testing the normality hypothesis in practice, the 
Pearson’s chi square test is most often used. For a small 
sample with 21 tests, the formula for calculating the chi 
square criterion value is the following:

 , (1),

where ni is the number of tests in the i-th histogram in-
terval;  is the expected probability of tests being within 
the i-th histogram interval under the normal data distribution 
law of the checked sample. 

Let us note that in accordance with the national standard 
recommendations [10], the average number of tests within 
each of the histogram intervals is to be close to 5. That is 
the reason why in formula (1) summation over 5 histogram 
intervals for a small sample of 21 tests is used. 

When developing the formula in 1990, Pearson had no ac-
cess to computer technologies. For this reason, he was forced 
to look for asymptotic relations for infinitely large samples. 
Today the situation has changed. Any student is able to write 
a program that can produce millions of samples of 21 tests. 
Figure 1 shows the probability density distribution of the 
chi square criterion values for samples with a normal and 
uniform value distribution law. 

Figure 1. Distribution of chi square criterion values for samples 
with a normal and uniform value distribution law 

Let us note that artificial neurons are configured in 
such a way as to effectively divide input data into two 
classes: normal and uniform [12]. Figure 1 shows that the 
threshold element of the chi square neuron divides the 
continuum of output elements into two areas: 0 is normal 
data and 1 is uniform data. The output quantifier of a chi 
square neuron is configured based on the condition of 
equally probable error values of the first and second kind 
of P1 = P2 = PEE = 0.292.
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Let us sort the data of the checked sample according to 
their values to obtain five input parameters of chi square 
neuron: 

 . (2)

At the same time, it is required to calculate the width of 
the histogram intervals:

 
. (3)

Furthermore, the position of the interval ends is calcu-
lated: 

 . (4)

Only after that, it is possible to calculate the number of 
hits for each of the histogram intervals and form a vector 
of input parameters {n1, n2, …, n5} for the neuron (1). The 
final result is quantized: 

 
 (5)

As the result, we have a complete formal description 
of the chi square neuron implementation for a sample of 
21 tests.

Synthesis and configuration 
of Shapiro-Wilk neuron with 10 inputs 

Obviously, the Shapiro-Wilk criterion can be applied to 
the same sample of 21 tests [4, 11]. This criterion is calcu-
lated as following: 

 
, (6)

where xi is the ordered values of the sample being 
checked, σ(x) is the standard deviation, ai is the table values 
of the Shapiro-Wilk coefficients. 

Figure 2 shows the distribution of the values of this cri-
terion for the uniform and normal laws. 

Figure 2. The distribution of the Shapiro-Wilk criterion values 
for the samples with 21 tests with uniform and normal distribu-

tion laws 

If the functions of (6) are considered as some kind of 
artificial neuron, then its outputs will be 10 differences of 

data of the sample being checked, and the output quantifier 
will be described as follows:

 
 (7)

Such configuration of the threshold of the quantifier 
provides the errors probability of the first and second kind 
of P1 = P2 = PEE = 0.303.

Synthesis and configuration 
of a Cramér-von Mises neuron 
with 20 inputs 

If we compare the chi square neuron (1) and the Shapiro-
Wilk neuron (6), we can see the growth of their input dimen-
sion (the number of inputs of their adders). The Cramér-von 
Mises neuron has an even higher input dimension: 

 . (8)

Figure 3 shows the distribution of values at the output of 
the Cramér-von Mises neuron adder. 

Figure 3. Distribution of values of the Cramér-von Mises 
 criterion for samples with 21 tests with the uniform and normal 

distribution laws

The configured output quantifier of the neuron adder is 
described as follows: 

  (9)

Such threshold configuration for quantifier operation 
provides the same values of errors probability of the first 
and second kind of P1 = P2 = PEE = 0.342.

Joint application of three statistical 
criteria

The statistical criteria described above are linearly in-
dependent (they have modules of correlation coefficients 
less than 1): 

  (10)
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The absence of a complete linear dependence (10) of the 
output states of the three criteria allows combining them for 
joint application. In this case, the output code of the three 
neurons “000” will correspond to a triple confirmation of 
the hypothesis of the data normality of the checked sample. 
The inverted state of this code “111” will correspond to the 
triple confirmation of the hypothesis of the uniform law of 
distribution of small sample data.

Let us consider one of two hypotheses for the majority of 
states of “0” or “1” in the output code of the three neurons 
code by analogy with practical application of neural network 
converters, which is biometrics and code. In this case, each 
of the four code states “normal distribution” will correspond 
to its own probability of errors. Table 1 shows these data. 

Table 1. Error probability for the code states 
“ normal distribution” 

Code “000” “001” “010” “100”
P1 0.0404 0.0423 0.0441 0.0621

Then, if we consider the codes from Table 1 as some 
complex characteristic of “data normality” it can lead to 
errors arising with the probability from 0.0404 to 0.0621. 
There is about a 7-fold decrease in probability of taking 
wrong decisions, when using three statistical criteria in 
comparison with their application one by one. 

Effect of increasing accuracy 
of estimates with the growing size 
of the group of neural network 
integration of statistical criteria

Dozens of statistical criteria have so far been developed 
and applied [4, 10, 11]. Supposedly, an equivalent artificial 
neuron can be developed for each of them. Moreover, pre-
viously unknown statistical criteria are under development 
[13–17]. The first progress in this area will allow adding 
dozens of completely new statistical criteria to the existing 
ones. That means that in a few years it will be possible to 
develop a series of hundreds of different statistical criteria 
and their neural analogs. 

The question arises: up to what level is it possible to 
reduce the probability of errors by means of neural network 
integration of a collection composed of 100 and more sta-
tistical criteria? This question can be answered based on 
the accumulated technological experience in processing of 
neural network biometrics data. 

The neural network symmetrization technology can be 
used for prediction [18, 19]. To implement it, let us average 
the error probability of the three previously examined neu-
rons (0.292+0.303+0.342)/3 = 0.312. Then, let us average 
the modules of correlation coefficients between the output 
states of the three neurons (10): E(corr(.)) = 0.645. We 
proceed from the fact that all of the 100 integrated criteria 
have symmetric matrices of correlation coefficients with the 
elements’ values outside its diagonal of 0.645.

Another simplification is the normalization of the output 
states of neuron adders that contradicts the data presented in 
Figures 1, 2, 3, but at the moment only for this simplification 
there is a positive experience of using symmetrization.

Figure 4 shows the block diagram of the numerical experi-
ment. Initial data for the numerical experiment are obtained 
from 100 software generators of pseudorandom numbers 
with normal distribution. 

Figure 4. Block diagram for modelling completely symmetrical 
artificial neural networks 

As 100 software generators provide independent data, 
such data needs to be interconnected and correlated equally. 
Figure 4 shows that this function is performed by the second 
left block that multiplies the vector of independent random 
numbers and by a symmetric connecting matrix: 

 . (11)

Due to the symmetry that connects the transfer matrix 
(11), the output data is correlated equally. To obtain a given 
value of coefficients of equal correlation corr(yi,yi+1) = 0.645, 
it suffices to find the value of one control parameter a.

Let us note that the procedure of relations and data 
symmetrization cannot provide exact correspondences of 
predictions and real data. If we set the quantization threshold 
of the neuron emulation block in such a way that the error 
probability is 0.312, then the output triple will have a total 
error of 0.138. This result is about 3 times worse than the 
actual data in Table 1. 

Let us reduce the equal probability of errors of each 
neuron from 0.312 to 0.141 to match the results with the 
observed data. In this case the probability of errors of joint 
operation of three neurons will be 0.0404. 

The transition from normal data to data with the equal 
correlation is profitable as for this special case in logarithmic 
coordinates the error probabilities and number of neurons are 
connected by a linear dependence as shown in Figure 5. 
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Figure 5. The line of decreasing probability of errors of the first 
kind due to application of several statistical criteria with correla-

tion coefficients of 0.645

The line was constructed in 7 groups, composed of 1, 3, 
6, 10, 16, 21, 27 neurons. When conducting an experiment, a 
sample of 10 000 000 tests was used; the computation time for 
a conventional computer is about 9 minutes. It should be noted 
that using this computer it is difficult to conduct a numerical 
experiment for a group of 100 neurons, as such experiment 
would take several months. It is possible to reduce the time 
by means of extrapolation (dashed line in Figure 5). 

As the result, the predicted value of the error probability 
for a neural network generalization of 10 criteria should be 
P1 = 0.01, and when summarizing 100 criteria the probabil-
ity of errors should go down to 0.0009. Such a significant 
reduction of errors probability is a greater incentive for the 
synthesis of new statistical criteria [13-17].

Conclusion

Pearson, who created the chi square criterion in 1900, 
essentially launched a revolution in statistical processing. 
The path of development discovered by Pearson proved to 
be very fruitful and over 119 years his followers have cre-
ated dozens of different statistical criteria. 

Neural networks have been a focus of scientific research 
since the middle of the 20-th century, but only at the begin-
ning of the 21-st century this technology was implemented 
into the industry and standardized [3]. 

The key statement of this paper is that it is possible to 
combine two seemingly different branches of mathematics. 
Their integration only requires the neural network biometric 
data processing technologies that are standardized in Russia 
and are applied to 3 or more standard statistical criteria. In 
the case of the considered triple of statistical criteria, this ap-
proach reduces the probability of errors more than 7 times. In 
this case, thesis on expediency of expansion of nomenclature 
of the existing statistical criteria becomes obvious. The larger 
is the size of the group of statistical criteria generalized by 
neurons the better is the final result. 

In this context, the approach to the synthesis of new 
statistical criteria is fundamentally changing. After Pearson, 
mathematicians were trying to find a new, more powerful 
criterion. A great number of analyzed criteria proved to 
have low power, and therefore were not published. With 
neural network integration of a set of statistical criteria, the 
power of each of them becomes secondary. The correlation 
relationships between the added criterion and the group 
of other criteria are also very important. In our case, two 
integrated criteria have almost the same power, but in this 
group there is a special Shapiro-Wilk criterion that has low 
correlation with the primary chi square and Cramér-von 
Mises criteria.

Thus, the possible diversity of statistical criteria is to be 
researched again, taking into account not only their relative 
power, but also the values of their correlation coefficients in 
groups with other relevant statistical criteria. New statistical 
criteria with relatively low power of hypothesis separation 
were previously rejected and not published, but now the 
situation has changed. It is more important to understand 
how the new criterion complements the already studied 
statistical criteria. Probably, it will be necessary to create a 
table of the level of affinity (correlation) of already known 
and promising statistical criteria in the nearest future. Lin-
early independent (weakly correlated) statistical criteria 
have to be grouped, and neural network integrations are to 
be created for them.
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