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Abstract. Redundancy, e.g. structural redundancy, is one of the primary methods of improving 
the dependability, ensures failsafety and fault tolerance of components, devices and systems. 
According to the International Patent Classification (IPC), the class of systems and methods 
G06F11/18 is defined as «using passive fault-masking of the redundant circuits, e.g. by quad-
rupling or by majority decision circuits». Obviously, «fault-masking» masks not only faults, but 
failures as well. The majority decision circuits (MDC) in the minimal configuration implements 
a «2-out-of-3» choice. According to the above definition, such redundancy should not require 
a special decision circuit. However, that is not always the case. In cases when the resulting 
signal out of a quadruple logic is delivered to, for instance, an executive device, a «3-out-
of-4» selection circuit is required anyway. Another dependability-improving solution is defined 
by class G06F 11/20, «using active fault-masking, e.g. by switching out faulty elements or 
by switching in spare elements». The word «active» is missing here, thus we have active and 
passive fault tolerance. The paper examines passive fault tolerance that uses triplication and 
quadrupling and compares the respective probabilities of no-failure.The Weibull distribution is 
used that most adequately describes dependability in terms of radiation durability under the 
effects of heavy ions. It shows that in a number of cases quadrupling has a lower redundancy 
than triplication. A formula is proposed that describes the conditions of preferability of quad-
rupling at transistor level.
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Introduction

Redundancy, according to the new GOST [1] is “the 
method of guaranteeing the dependability of an item through 
the use of additional means and/or capabilities redundant 
as regards those minimally required for the performance of 
the desired function”. Redundancy is especially important 
for systems whose operation is affected by radiation, e.g. 
spacecraft control systems. In this area the principle of radia-
tion hardened by design (RHBD) is employed that involves, 
for example, triplication (triple modular redundancy, TMR) 
[2, 3]. Majority redundancy, whereas a failure or a fault are 
masked with no significant time expenditure, is indicated 
in the GOST [1]. However, the associated terms “passive” 
fault tolerance is not specified. Active, adaptive fault toler-
ance [4, 5] has a lower redundancy as compared to passive 
fault tolerance, but it requires procedures for supervision, 
diagnostics, reconfiguration that take significant time. In 
critical systems with relatively short time of operation, 
including those affected by radiation, majority redundancy 
of 300 percent or more is frequently used. At the same time, 
so-called quadrupling is also applicable. As it turns out, in 
some cases 300-percent redundancy can be more costly than 
400-percent redundancy, if we take into consideration the 
required additional equipment that sometimes is not required 
in case of quadrupling. Let us examine the special features 
of such redundancy solutions.

Problem definition

Triplication involves “2-out-of-3” voting, i.e., in the bi-
nary case, the majority of entities. More generally, majority 
voting means the choice

 (r+1)–out–of–(2r+1), (1)

where r is the number of masked (countered) failures.
The probability of no-failure P(t) for Weibull’s exponen-

tial model [6] is as follows:

, (2)

where λ is the failure rate of one channel (the dimen-
sionality is 1/h); α is the Weibull distribution coefficient, 
1 < α < 2; t is the time of operation in hours; r is the number 
of countered failures (faults). 

Thus, the redundancy for r failures (faults) by means of 
majority voted redundancy is described by formula 

 2r+1. (3)

I.e. failures (faults) are countered in r channels out of 
possible 2r + 1.

In case of quadrupling, one failure (fault) is countered in 
one of the 4 elements that can be regarded both as channels 
and, for instance, separate CMOS transistors.

A broader interpretation of such configuration requires 
the following redundancy

 (r+1)2. (4)

In this case failures (faults) are countered in r channels 
out of possible (r+1)2.

The probability of no-failure P(t), if voting is not required, 
is as follows:

 . (5)

Let us examine formulas (1) to (5) taking into account 
the special features of various implementations of redun-
dancy.

Theoretical part

In case of a “2-out-of-3” majority voted redundancy 
(r = 1) we have three channels and majority elements (ME) 
and obtain the structure diagram of dependability (Fig. 1).

Figure 1. “2-out-of-3” majority voted redundancy

Given that the channel has n elements (e.g. transistors) 
and the complexity of ME is 12 transistors we obtain [7]:

 . (6)

For the purpose of countering failures (faults) in ME, let 
us obtain the structure diagram of dependability (Fig. 2).

Figure 2. Majority voted redundancy

In this case we obtain:

. (7)
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Furthermore, three power supplies are required. Thus, 
either the failure of one power supply, or the failure of one 
channel, or the failure of one majority element is coun-
tered.

“3-out-of-5” majority voted redundancy. Accordingly, 
five “3-out-of-5” majority elements are required:

 (8)

Majority voted redundancy that enables operation 
with one channel. In this case the system is capable of rear-
ranging itself into a doubled configuration and further into 
a single-channel configuration, if necessary. That requires 
more complex additional equipment. Taking into account 
the additional equipment for reconfiguration (the failure 
rate is λд) we will obtain:

. (9)

Formula (9) does not take into consideration the prob-
ability of “oversight” in case real-time testing does not detect 
the failed channel.

The so-called deep majority voted redundancy involves 
“splitting” channels into k parts (Fig. 3).

Let us assume that λ, the failure rate of the entire channel, 
is split into k identical parts, then we obtain

. (10)

If n elements are quadrupled (r = 1), we obtain:

 . (11)

However, formula (10) only holds for restriction (r+1)2≤q 
in connection with the Mead-Conway requirements [8] 
on the maximum number of series-connected transistors 
r in a circuit that cannot be more than q (before and after 
quadrupling). 

Let n be the number of transistors (while observing the 
Mead-Conway restriction) and m be the number of the cir-
cuit’s outputs. Then for r = 1 by comparing the quadrupling 
and triplication, we will obtain:

  (12)
Otherwise, if the following formula is correct

 
 (13)

quadrupling is not “costlier” than triplication.
In the case of channel quadrupling “3-out-of-4” voting 

is required, therefore we will obtain:

  (14)

Experimental part

With no regard to the probability of no-failure of the 
majority element we obtain the probability of no-failure of 
a majority system  with a “2-out-of-3” selection:

  (15)

Thus, for example, if P = 0,9 we obtain a significant 
increase:

 . (16)

A “3-out-of-5” majority voted redundancy improves the 
dependability even more:

 . (17)

For example,

. (18)

With no regard to this additional equipment and majority 
elements, that can also be triplicated, in the case of majority 
voted redundancy that enables operation with one remained 
channel, we will obtain:

  (19)

In this case the probability of no-failure reaches the 
value

Figure 3. Deep majority voted redundancy
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  (20)

Let us obtain in MathCad the time curves of com-
parison of the formulas for the probability of no-failure 
for a single-channel digital system e–λt with majority 
voting redundancy of “2-out-of-3” (5) and “3-out-of-5” 
(7) (Fig. 4).

Figure 4. Comparison of a single-channel digital system e–λt with 
a majority voted redundancy: “2-out-of-3” (P1(t), blue line), 

“3-out-of-5” (P2(t), green line) if λ = 10-8, α = 1

We see that the majority voting redundancy “raises” 
the exponential curve beyond the point that corresponds 
to approximately a third of the time axis, but this causes 
a “slack” in the last third. After a certain value of time 
the probability of no-failure becomes less than 0.5 an 
the non-redundant configuration becomes better that a 
redundant one. It is clear that such probability should not 
be allowed to happen. Let us evaluate the deep majority 
voted redundancy (Fig. 5).

We can see that the deep majority voted redundancy 
considerably improves the dependability as the number of 
layers k grows.

If λ = 10-5, , α1 = 10 we obtain the optimum for 

k = 12, t = 104 (Fig. 6, a). If λ = 10-3, λme = 10-5 we obtain 
the optimum for k = 100 (Fig. 6, b).

The cost of the system increases in comparison with 
ordinary majority voted redundancy:

  (21)

where Cλ is the cost of one channel, Cme is the cost of 
the majority element, Cps is the cost of the power sup-
ply. The signal propagation delay only increases by the 
delay of one majority element τme. In (21), the growing 
complexity of routing is not taken into consideration. In 
case of deep majority voted redundancy, the costs are 
significantly higher:

  (22)

while the signal propagation delay is increased by the 
delay k of the k·τme majority elements. Normally, that is done 
if high dependability must be ensured, while the reduced 
performance is compensated by algorithmic methods.

Let us obtain comparison graphs for transistor-for-
transistor circuit quadrupling with majority voted redun-
dancy. Countering a failure of any single transistor in each 
transistor configuration (each group of four transistors) 
requires quadruple redundancy [9] and is described with 
formula:

 . (23)

a)                                                                             b)
Figure 6. Optimum of deep majority voted redundancy: а) k = 12, b) k = 100

Figure 5. Probability of no-failure curves of a system without 
majority voted redundancy e–λt, with majority voted redun-

dancy P1(t) and deep majority voted redundancy Pk(t) (k layers, 
k = 3, 5, 7, 9, 11, 13, 15) if λ = 10-8
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Countering a failure of any two transistors in each tran-
sistor configuration requires nonuple redundancy and is 
described with formula:

. (24)

The respective graphs are shown in fig. 7.
Countering a failure of any three transistors in each tran-

sistor configuration requires sixteen-fold redundancy and is 
described with formula:

  (25)

Change graphs of the probabilities of no-failure of 
a non-redundant circuit P(t); a FCTLUT circuit that 
counters one failure Pftm2(t); a FCTLUT circuit that 
counters two failures Pftm3(t) and a FCTLUT circuit 
that counters three failures Pftm4(t) if n = 4 are shown 
in in fig. 8.

a)                                                                           b)
Figure 7. Change graphs of the probability of no-failure of a non-redundant circuit P(t); a quadruple circuit that counters 

one failure Pftm(t); a triplicated circuit with three majority elements P33(t) and a circuit that counters two failures Pftm2(t) if the 
failure rate is 10-5 1/h; a) within probability range from 1 to 0; b) within probability range from 1 to 0.4

a)                                                                                   b)
Figure 8. Change graphs of the probability of no-failure of a non-redundant circuit P(t); a quadruple circuit that counters one 

failure Pftm2(t); a circuit that counters two failures Pftm3(t) and a circuit that counters three failures Pftm4(t) if the failure rate is 10-5 1/h; 
a) within probability range from 1 to 0; b) within probability range from 1 to 0.4

a)                                                                       b)                                                                           c)
Figure 9. Channel quadrupling: a) n = 10, m = 1; b) n = 100, m = 1; c) n = 100, m = 10
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Comparison of channel quadrupling P4(t) with a non-
redundant circuit and triplication P3(t); P33(t) is shown 
in fig. 9.

Conclusion
Quadrupling at transistor level is the most efficient solu-

tion in terms of designing radiation-resistant digital equip-
ment. It enables higher probability of no-failure as compared 
to triplication throughout the timeframe. In some cases the 
redundancy of quadrupling is lower than that of triplication, 
if majority elements are taken into account. Countering 
any single failure in each transistor configuration requires 
quadruple redundancy. Countering any two failures in each 
transistor configuration requires nonuple redundancy that 
enables a higher probability of no-failure of a quadruple 
circuit, yet it is outperformed throughout the timeframe by 
a sixteen-fold redundant circuit that counters the failures of 
any three transistors in each transistor configuration whose 
implementation required sixteen-fold redundancy. Counter-
ing powers supply failures can be done by doubling it as part 
of a quadruple circuit, e.g. as it is proposed in [10]. 
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