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Structural reliability. The theory and practice
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PROBABILISTIC ESTIMATES OF OPERATION 
OF DYNAMIC SYSTEMS SPECIFIED BY A LARGE AMOUNT 
OF PARAMETERS

This article offers an algorithm of probabilistic estimation of reliability of multi-parameter dynamic systems. 
Probabilistic estimates are based on multivariable distributions statistically received from the results of 
experimental testing. For this purpose we consider two separate cases – direct and indirect measurement of 
parameters. Reliability of dynamic systems is also considered in terms of validation of statistical hypotheses. 
The statistics used to validate hypotheses are based on the assessment of distribution parameter received 
experimentally.
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statistical hypotheses.

Introduction 

Reliability is one of the determining properties specifying the quality of functioning of a 
technical system, inclusive of a dynamic system [1]. Let us note that depending on a type of 
input and output signals, there are continuous and discrete models of dynamic systems. This 
is described in more detail in paper [2]. One of the problems related to the assessment of reli-
ability of a dynamic system is in turn the fact that the state of such system is normally speci-
fied by a large amount of parameters. On the one hand, this is stipulated by a large amount of 
interaction nodes within a dynamic system, and, on the other hand, by the fact that the nodes 
composing the system are the subsystems with a large amount of parameters specifying their 
state in working mode, i.е. during operation. That is why a conclusion about the reliability of 
a dynamic system can be made based on experimental testing of its nodes, or on experimental 
testing of a system as a whole. We shall assume that during experimental testing of the nodes, 
the parameters specifying their state can be measured directly. Let us also assume that when 
conducting experimental testing of a system, when indirect measurements are carried out, the 
task is reduced to a known model of linear regression when the specified loads act as factors, 
and а response is associated with a certain measured parameter specifying the system state 
as a whole.

Reliability assessment at the direct measurement 
of parameters

Let us assume that the technical parameters of a certain device or a node of a dynamic 
system are under testing. Technical parameters are well known to take a direct measurement 
more often. For these parameters it is the easiest to define the rules and permissible limits, 
deviations from which can mean definition of a failure or a defect of the object’s functioning. 
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Anyway, we shall expect that with these limits we totally 
specify an acceptable region of the parameters ω. Making 
the task more specific, let us also assume that the state of 
a technical object (a dynamic system node) is specified by 
m parameters {βj, j=1, 2, …, m}, which shall be combined 
into a vector with respective dimensions  
(т is a transposition sign). We shall also expect that as the 
result of the conducted series n of experimental testing 
we have obtained some data (the sample number n) of the 
direct measurement of parameters 
, i=1, 2, …, n}. 

Let us compute the following statistical estimates 

 
, (1)

 
, (2)

 
. (3)

In formula (1) there is an estimate of mathematical ex-
pectation , which coincides with 
mathematical expectation of the parameter measurement 
vector  (2) there is an estimate of the matrix  of disper-
sions and cross covariance of the parameter measurement 
vector  that is 

(square brackets with indices denote the taking of a 
respective matrix element, D is a dispersion sign, cov is 
covariance); (3) there is a matrix of dispersions and co-
variance of estimate β. Therefore, we can consider two 
multivariable normal distributions  and , 
different in scope only, the scope of the second distribution 
is  times smaller. 

We shall assume that the acceptable region ω is a limited 
open set, which means that the closure of this set ϖ is com-
pact. Openness here is interpreted by the fact that reaching 
of the vector of parameters of a limiting acceptable value is 
exceptionally undesirable. Moreover, even the fulfillment 
of such condition as, for instance, “estimate  is an inner 
point of the acceptable region ω”, is not a guarantee for reli-
able operation. Only the respective probabilistic estimates 
can serve as such guarantee. To form these estimates, let us 
consider the distribution . Density function of this 
distribution is expressed by the formula

 
, (4)

where a vector of variables x belongs to a m-dimensional 
real space Rm. 

Let us assume that the limit ∂ω of the acceptable region of 
the parameters ω is defined by a final set of equations of the 

ϕk(x)=0 type, where {ϕk, k=1, 2, …, kω} is a respective set of 
continuously differentiable functions. This set is consistent 
with a set of Lagrange functions of the following type

  (5)

and these functions are in conformity with a task sys-
tem

 

. (6)

The system (6) results in a set consisting of the kω solu-
tions, from which we shall choose a value x∗ delivering the 
largest value of density function (4). In this case the value 
of density function is usually called likelihood. That is why 
the value of vector of parameters β*=х* shall be called a 
boundary point of maximum likelihood. By this point x∗ let 
us define a reliability ellipsoid as follows [3] 

.

We shall clarify the construction of this ellipsoid. It is easy 
to see that a probabilistic measure of the region ω 

,

Is in fact a probability that the value of parameters’ vec-
tor belongs to ω, but this probability cannot be considered 
as a probability that a vector will not occasionally cross the 
limits of ∂ω. Such a probability is evidently a probabilistic 
measure of reliability ellipsoid 

 
. (7)

In relation to formula (5) we should note that if the density 
function  of distribution  is substituted 
by the density function  of distribution ,  
which is deduced by the substitution of the matrix  by 
the matrix  in formula (4), then we shall get the same 
value x∗ and, respectively, the same reliability ellipsoid W. 
However, the probabilistic measure of this ellipsoid by the 
distribution  is the probability that the mean value 
(or mathematical expectation, the unbiased estimate of 
which is the mean one) of parameter vector shall not cross 
the limits of ∂ω, in other words we have 

 
. (8)

For the purpose of technical diagnostics, the assessment 
of change of external conditions affecting an object’s dynam-
ics is not normally performed as the defect finding is usually 
made in special mode in which the parameters of ambient 
environment are fixed. In this situation the estimate (8) is 
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rather substantiated. But in the case when due to technical, 
constructive or other features, the parameters of a tested 
device are not absolutely stable and can change depending 
on the operation conditions, a probabilistic measure (8) 
cannot be regarded as a reliability measure, and then the 
probabilistic measure (7) should be used.

The aim of assessment of reliable operation can be con-
sidered in terms of validation of statistic hypotheses. We can 
consider the hypothesis that the mathematical expectation 
of the parameter vector does not belong to the acceptable 
region , which can be equivalently expressed 
by the way that the mathematical expectation of this vector 
belongs to the supplement of the acceptable region in Rm, 

. As it is shown in papers [4] and [5], in order 
to validate the hypothesis Нϖ , it is sufficient to check the 
hypothesis . Indeed, if on a certain significance 
level α the hypothesis Н∗ is discarded, the hypothesis Нϖ 
shall be discarded on the same significance level as well. 
The statistics appropriate for this validation are formed as 
follows. Let Q be an orthogonal matrix carrying the matrix 

 to diagonal form, that is 

then in case of a true hypothesis  the com-
ponents of the next vector 

, 

 where  (9)

shall follow Student’s distribution with an amount of 
degrees of freedom (n–1). Indeed, let us consider the vector 

, whose every j-th component being a linear combi-
nation of normally distributed variables, i.е. 

,

is also distributed by a normal probability law, and 
therefore the same (normal distribution but with other pa-
rameters) is also attributed to every j-th component of the 
vector , and this component is respectively 
equal to 

 

where 
And the variables βk*, k=1, 2, …, m are the components 

of the vector β*, i.е. the coordinates of a boundary point of 
maximum likelihood. Therefore, the elements of the matrix 

 are respectively equal to

,

where  is an estimate of dispersion of the element uj, 
and

The last equation leaves no doubts as to the above men-
tioned statement concerning the distribution of components 
of the vector s. Besides, we shall remind that as the sample 
number increases, Student’s distribution asymptotically 
tends to a standard normal distribution N(0,1). Consequently, 
the distribution of the variable 

  (10)

asymptotically tends to the chi square distribution with m 
of degrees of freedom. Having chosen the significance level 
α, we can validate the hypothesis  by checking 
the following inequations 

  (11)

 , (12)

where  and  are quantiles of the chi square dis-
tribution and Student’s distribution, respectively. And Stu-
dent’s criterion is considered to be two-sided. If even one of 
the inequations (11) and (12) is not satisfied, the hypothesis 
H* is discarded. It gives confidence that the mathematical 
expectation of the vector of parameters shall not exceed the 
limits of the acceptable region.

As it has been indicated above, such approach to reli-
ability assessment is valid only if the parameters of a 
technical device under testing are constant values, and 
variation of testing data occurs only due to measurement 
uncertainty. In case of variable parameters, when there is 
a dependence on operational conditions – such as rate and 
type of load, etc, the conclusion about the reliability of 
a tested technical device can be made only by checking 
of the hypothesis , which is interpreted in the 
way that the situation is possible when the parameters 
will reach the boundaries of the acceptable region ω. The 
check of such hypothesis is based not on the distribution 
of estimate of the mean value , but on the distri-
bution of a measurement data vector , the scope 
of which is more by  times.

It means that the statistics (9) or the components of 
the vector s decrease by  times, and the statistics 
(10), i.e. q decreases by n times. Having discarded the 
hypothesis , we shall discard the hypothesis  
as well, which is in this context interpreted in the way 
that the vector values of the parameters β may occa-
sionally turn out to be beyond the boundaries of the 
acceptable region ω, i.e. at some time there may occur 
an emergency situation.
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Reliability of a dynamic system at an 
indirect assessment of parameters 

To assess the reliability of a dynamic system, a pre-
liminary choice of type of test load as well as of possible 
restrictions for its parameters is made at the initial phase 
of the development (or choice) of a diagnostics method. 
Impossibility of direct assessment of the parameters leads to 
a necessity to use a model. In many cases for such a model 
we can use a linear model of a multiple regression type. If 
the parameter estimates cannot be found with a satisfactory 
accuracy, either the model itself, or a set of certain data 
should be changed. And when we speak about the change of 
data set we mean the increase of a number of values of the 
regressors which here should be interpreted as the specified 
modes or loads. 

Let us consider the following model 

 
 (i=1, 2, …, n). (13)

Here yi is a total characteristics of the system with a 
specified acceptable level ymax;  is a set of 
the known loads (modes) specified at the time moments i 
during a testing period n; a set of parameters 
specifies a reaction to the prescribed loads; εi is an error of 
the model (13) that can be interpreted as an error occurring 
due to measurement inaccuracy, or as the result of unac-
counted loads. As a vector-matrix form, the model (13) shall 
be written as follows

Y = Zβ+ε,

where Y is a vector with n dimensions of the values yi; 
ε is a vector with n dimensions of model (13) inaccuracy; 
Z is a matrix with dimensions n×m, the i-th line of which 
is equal to  β is still a vector of the 
parameters but with dimensions (m+1). If we assume that 
inaccuracies do not correlate, that they have the same dis-
persion and are distributed by multidimensional normal 
law, i.e..  (0 is a zero column, I is an identity 
matrix), then the estimate by a least squares method (LS) 
of the parameter vector is 

and the matrix of cross covariance of this estimate is as 
follows 

,

where  is an unbiased esti-
mate σ2.

For a specified set of loads , a condition 
of the reliable operation of the system can be written by 
an inequation 

,

where . 

Let  be the density function of normal distribu-
tion  For Lagrange function 

the solution of the respective Lagrange task has quite a 
simple form

 .

Further, by assigning , we can, as in case of direct 
measurements, define the reliability ellipsoid 

as x* is a point of tangency of the reliability ellipsoid 
with a hyperplane  which specifies a separation 
between unsafe and safe modes of system operation.

A probabilistic measure of this ellipsoid by the dis-
tribution  is actually the probability of reliable 
(safe) operation of the system. And it is very important to 
perform correct specifications of the largest possible loads 

 To check the hypothesis  in case 
of indirect measurements we also have the statistics 

 
 and

Where an orthogonal matrix Q, still leads to diagonal 
form of the matrix  And the components of the vector s 
in case of a true hypothesis  shall have Student’s 
distribution with a number of degrees of freedom equal to 

 and the number of degrees of freedom of the 
statistics q shall be equal to (m+1). In addition to these 
statistics, the variable 

in this assumptions will have exactly the F-distribution 
with a number of degrees of freedom 

Note: If to pass to centered values in (13), it will lead to 
the exclusion of the parameter  which does not reflect 
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connection with the load fluctuations. In this case the number 
of degrees of freedom of the statistics q shall be equal to 
m, and the number of degrees of freedom of the statistics γ 
shall be equal to 

Conclusion

Mathematical apparatus offered by this paper can be 
successfully used when performing the assessments of 
technical systems reliability. The obtained estimates define a 
lower limit of a confidence interval of reliability parameters. 
Accumulation of statistics shall enable to let the estimate 
move to the right towards real values. To reduce time, we 
can use the existing and widely applied software tools such 
as Mapple, QStat.
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