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Structural reliability. The theory and practice

Onischenko D.D.

EMPERICAL TECHNIQUE OF FORECASTING OF LOADED 
MULTI-ELEMENT SYSTEM COLLAPSE

The paper presents a technique of lifetime reliability estimation for a loaded multi-element system, with the 
estimation being conducted during the failure of the system. The failure process is considered as quasi-
static, and as a model example, the Daniels fiber bundle model is used.
The method is based on statistical analysis of the burst sequence, where burst is a simultaneous failure of 
a number of elements under current total load (package of destructions). As the destructions progresses, 
we register maximum frequencies for bursts of successive sizes (i.e., single, double etc.). This data is 
used (via “moving window” averaging technique) for the improvement of the statistical estimate of the time 
remaining to the avalanche and full system collapse.
Computer simulation is used to illustrate the performance of the proposed procedure. A comparison of the 
approach proposed with ones previously suggested by other researchers is presented, and the benefits 
of the new technique are shown.

Keywords: quasi-static failure, multi-element system, Daniels fiber bundle, lifetime, avalanche, burst sta-
tistics, moving window.

Introduction

The task of forecasting collapse coming (full destruction) for a loaded multi-element system is faced 
and found in its different variations in many areas of physics (models of non-uniform environments’ 
destruction), technical equipment and engineering modeling, and on essentially various spatial and time 
scales (see, for example, [1]). Seismic and volcanic activity, various models of electromechanical systems, 
destruction of materials at operation of engineering systems and designs represent characteristic examples 
[2-5]. The situation when it is a question of forecasting a system resource at its designing stage is widely 
presented in the literature [6-7]. However, special interest is represented with cases when it is required 
to give the time forecasting of collapse coming directly in process of destruction progression based on 
supervision over system behavior. 

Generally, the collapse is preceded with the period of gradual degradation of a system, expressed in 
consecutive destructions of separate elements. At the same time, there are both single and group destruc-
tions. The problem of localization of large group destructions (as potential sources of an avalanche origin) 
in investigated system can be solved, for example, by means of diverse methods of acoustical emission 
[8-9]. On the other hand, in some cases (for example, at fulfillment of any conditions of system uniform-
ity), it is possible to attempt making conclusions about its affinity to a collapse based on the analysis of 



67

EMPERICAL TECHNIQUE OF FORECASTING OF LOADED MULTI-ELEMENT SYSTEM COLLAPSE

only one sequence of separate intermediate events of simultaneous destruction of elements, not being 
interested with spatial characteristics of these events. Many works relating to this subject has been devoted 
to studying of various discrete probabilistic models, among which modifications of a fiber bundle model 
are basic [10-12]. Models of continuous destruction [13] have been also investigated.

The present paper offers the technique related to dynamic, real time forecasting of the moment of a 
system final destruction coming under effect of increasing loading. The given technique is illustrated 
by an example of initial fiber bundle model [14], which is usually named as Daniels fiber bundle. The 
illustration is based on results of study of numerical experiments. Beside the description of the model 
and its numerical realization, the definition of characteristics used for the analysis of the system (current 
condition during the process of destruction stages on which there is an affinity to collapse system) and 
results of computer modeling are presented. The basic attention is given to the frequency change analysis 
of fixing group destructions of a small volume. Comparison of the offered technique with the approaches 
suggested earlier by other authors has been carried out. 

Problem statement 

First, let us give the brief description of considered classical model, Daniels fiber bundle, underlying 
in numerous models that are more complex. It is a question of fiber bundle mathematical model – the 
system consisting of N parallel fibers, fixed with both ends in such a manner that lengthening of all fib-
ers under stretching loading imposed to a bundle are identical. The positive number, which reflects fiber 
strength, is appointed to each fiber. This number represents the minimal value of stretching longitudinal 
load under which the fiber collapses. Fibers are considered statistically identical and it is assumed, that 
the law of strength distribution as random variable is the same for all fibers in a bundle and it is described 
by some distribution function Fx, x≥0. 

It is supposed that the stretching longitudinal load applied to the fiber bundle monotonously increases 
from zero value. By virtue of accepted assumptions loading is evenly distributed between fibers.

Actually, we deal with an abstract mathematical model in which external loading is evenly distributed 
between all efficient system elements. Further, for convenience we shall use the term “fiber bundle” for 
the designation of the specified model. 

We shall name a fiber as overloaded one if the load in the fiber is equal to its strength or surpasses it. 
At modeling process of bundle destruction when the fiber appears overloaded, it is removed from the 
bundle (it collapses), and the total loading on the bundle is evenly redistributed between the remained 
fibers. Loading process is considered in quasi-static statement: removal of the overstressed (overloaded) 
fibers and load redistribution at constant current general load is considered as instant event and comes to 
an end, when there are no more overstressed fibers. Only after that, if there were not removed fibers, the 
monotonous load increases continue at a bundle. 

The latter we shall name as a collapsed bundle when all fibers are removed from it. We shall name 
critical load a such value of bundle loading at which last fiber has collapsed. The value of critical load 
related to initial number of fibers N, we shall name critical specific load qbr.

Next, we shall name a package of destructions (or simply a package) a set of the fibers, which have 
collapsed simultaneously, that is at the same load applied to a bundle. Characteristics of a package are its 
sequence number (within the limits of current process of destruction), volume (amount of the collapsed 
fibers) and load value at which there was a destruction of fibers from the given package. Last package 
(after which the bundle is completely collapsed) we shall name an avalanche.
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Let us formulate the following general problem: to estimate dynamically, i.e. on a course of a bundle 
destruction, time which has remained before an avalanche. More strictly, it is required to estimate a se-
quence number of an avalanche in sequences of packages and critical specific load according to some 
initial site of destruction process. It is evident, that the longer this initial site, then the obtained estima-
tions, generally speaking, will be more accurate. At the same time, the signal about avalanche approach 
was to be received “not too late”. The latter characteristic can be specified in various ways.

Planning of numerical experiment

Bundle volume of N and strength distribution function of fibers Fx are two parameters of the formu-
lated problem. Further, results of the numerical analysis of considered model are presented in the work 
for various values N and the two types of strength distribution: uniform on a segment [0; 1] (for which 
average strength value and its dispersion are equal accordingly to 1/2 and 1/12); two-parametrical Weibull 
distribution with the same average strength value and dispersion. In the, we shall name these two types 
as the first type and the second type accordingly.

The following result has been obtained in the fundamental work [14]: critical specific load asymptoti-
cally at N →∞ normally represents distributed random variable with known average strength value and 
dispersion. The first is equal to maximal value of function

qx=x1-Fx,

and the second one asymptotically converges to 0. In particular, for two specified types of strength 
distribution corresponding to average values of critical specific load is an essence q1 * = 0,25 and q2 * 
≈ 0,23 accordingly.

The important, but elementary remark consists in the fact that at known N and Fx the specified task 
of forecasting of an avalanche is reduced to standard construction of a confidential interval. However in 
practice the basic interest represents research of a case when there is no opportunity of load measure-
ment, and only effects of local destructions (packages) are registered. Besides, a bundle volume is also 
usually unknown.

At carrying out of numerical experiment, we shall be limited by the case when external load onto a 
bundle increases proportionally to time. At the same time we have the following from the given above 
definitions: sequence number value of a package or the load value corresponding to the given package 
can be chosen in considered statement as discrete analogue of time. In general, process of destruction is 
completely described by two sequences: volumes of consecutive packages and values of load corresponding 
to them. Accordingly, during numerical modeling these sequences make the output information on results 
of each separate experiment. Te analysis of statistical characteristics of destruction process is made on the 
accumulated data, and the basic attention is given to studying shares of packages’ variability of various 
volume in process of development of destruction process and to search of possible regularities.

Realization and analysis of results

The course of numerical modeling represents the following logic sequence of steps. 
1. Bundle fibers are bind with random strength value for the specified bundle volume N and bundle 

type (I or II). 
2. Zero value is bind to the current full load on a bundle. Set of the destroyed fibers is assumed empty.
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3. If in a bundle, there are not destroyed fibers; values of their strength are ordered according to their 
increase. Current value of full load on a bundle is increased abruptly up to ν∙σm, where ν is the current 
number of not destroyed fibers, σm is the minimal of strength values from not destroyed fibers. If not 
destroyed bundle fibers are not present, process of destruction modeling is considered to be over. 

4. While not destroyed fibers are available among overstressed ones, the latter are removed from a bun-
dle (i.e. they are joined to the set of destroyed fibers) with simultaneous recalculation of current specific 
load on other fibers. Full load on a bundle within the limits of this cycle remains constant. When there 
are no overstressed fibers, you should come back to the step 3.

On results of modeling the information on critical specific stress, consecutive volumes of the packages 
formed on step 4, and values of specific load corresponding to packages are saved.

Let us represent graphically a trajectory of arising random process, setting aside on a course of bundle 
destruction the value of packages’ volumes along Y-axis, and corresponding values of specific load along 
abscissa axis.

As an example, the typical trajectory of arising point random process for a bundle of the first type (along 
abscissa axis – current specific stress, and along Y-axis – volumes of registered packages) is shown in 
Fig. 1, a. In this case the value of critical specific load has appeared equal to 0,2535 and the avalanche 
volume has made 5161 fibers at bundle volume equal to N=10 000 fibers,. The frequency diagram for 
volumes of packages recorded during destruction is presented in Fig. 1, b; their total number in the given 
experiment has made Kb=3056. 

It should be noted that relation KbN in all fulfilled experiments has appeared with rather small variability 
close to the certain value. For example, for bundles of the first type this value has made approximately 
31%. If the subsequent researches of model with various other types of strength distributions of fibers 
lead to similar results, then corresponding empirical estimations of total amount of packages can be used 
for forecasting of an avalanche affinity in the problem with known function of strength distribution. The 
author of this paper could not find the description of corresponding analytical or numerical result in the 
available literature.

Fig. 1. Results of numerical modeling of destruction of one bundle: 
volumes of consecutive packages (a), amount of recorded packages of the given volume (b)
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Representation of the frequency diagram (Fig. 1, b) in logarithmic coordinates shows good conformity 
with known asymptotic relation [15]

n (∆) N ∝ ∆--5/2,

where n (∆) is the total number of recorded packages of volume ∆ on a course of destruction. 

The following approach to forecasting time of an avalanche occurrence is offered in the investigation 
[16]. Authors mark that at approach to collapse (i.e. on the so-called prior to avalanche segment) the 
above-stated asymptotic relation is transformed into the following expression 

n (∆) N ∝ ∆--3/2,

where n (∆) is the total number of recorded packages of volume ∆ recorded on prior to avalanche 
segment. They suggest to consider change of exponent estimation in expression ∆α from values close to 
α1 =--5/2, onto the values close to α2 =--3/2 as the indication of avalanche approach. 

It is necessary to note, however, that strict definition of a prior to avalanche segment in the specified in 
the mentioned above work is absent, and in the numerical calculations authors take as this segment such 
a segment in the beginning of which specific load made 90 % from its critical value. As the concept of 
specific load is not defined in conditions when the bundle volume is unknown, the given approach cannot 
be directly used for a quantitative forecasting of the moment of an avalanche approach in any problem 
with unknown amount of elements. 

Let us try to modify this approach, using the estimation α on sliding time window (i.e. according to last 
packages s, where s is some number set beforehand). Fig. 2 presents the results of numerical modeling 
of bundle destruction of the second type. The bundle consists of fibers equal to N=100 000, the width of 
a supervision window makes s=1 000 packages.

Fig. 2. Estimation of an exponent in the law of distribution of volumes of packages in one experiment: on all 
fixed{recorded} to a present situation of time to packages (), on the last s to the fixed{recorded} packages ()
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At the same time the estimation of an exponent shown in Fig. 2,a is received in view of total amount of 
the packages recorded from the very beginning of destruction process, and in Fig. 2,b – in view of amount 
of recorded packages within the limits of current window. It is obvious, that stabilization of estimations 
near to the value α1 practically are absent, and in the first case the situation is essentially worse. Results 
of numerical experiments show, that at larger values of a bundle volume the stabilization is going on 
slowly if at all. Besides, transition to exponent values close to α2, occurs without characteristic step jump 
which would allow to localize the moment of the beginning of prior to avalanche segment. It is important, 
that the described picture does not depend on the size s of a used window. For example, corresponding 
diagrams for the same realization of destruction process are shown in Fig. 3which are presented in Fig. 2, 
but at other value of the window size: s=10 000.

Offered technique of an avalanche forecasting

The following approach to the statistical analysis of destruction process appears more effective and 
simultaneously simpler. Let us set some sufficiently great value of width s for a sliding window. Begin-
ning with package under number s through every s/2 packages we shall calculate portions of packages of 
volume 1, 2 and 3, registered in the current window. In parallel, we shall trace an estimation of above-
mentioned exponent according to the same last s packages.

The numerical analysis shows, that obtained diagrams (the role of time as it was mentioned above, 
plays the current value of specific load on a bundle) possess feature of universality in the following sense. 
Their statistical averaging, i.e. according to results of independently carried out numerical experiments, 
(at the fixed bundle type) is a trajectory, not dependent neither from bundle volume nor from the size of 
used sliding window. Results of calculations according to outcomes of five numerical experiments for 
each bundle of volume N=20 000, 50 000 and 100 000 accordingly are shown on fig. 4, 5 and 6. Diagrams 
of change of the exponent α are shown on corresponding fig. (a). Diagrams of change of packages’ por-
tions for individual volume concerning the total number of packages recorded in the current window are 
shown in corresponding Fig. (b). Diagrams of change of packages’ portions for unit volume packages in 

Fig. 3. Estimation of an exponent in the law of distribution of volumes of packages in one experiment: on all 
fixed{recorded} to a present situation of time to packages (), on the last s to the fixed{recorded} packages ()
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relation of volume ∆=2 are shown in corresponding Fig. (c). Diagrams of change of packages’ portions 
for individual volume packages in relation of volume ∆ =3 are shown in corresponding Fig. (d). Each 
point in Fig. 4 – 6 has been obtained by results of recording in “observation window” from s=1000, 2000 
and 3000 consecutive packages accordingly, thus shift between windows makes s/2 packages. Values of 
load corresponding to the last packages in the current window are put on X-axis.

Fig. 4. Results of numerical modelling of destruction of 10 bundlees{beams} with uniform distribution of durability of fibres: 
Estimation of an exponent in distribution of packages (), 

Share of packages of volume 1 (), a share of packages of volume 2 (), a share of packages of volume 3 ()

Fig. 5. Results of numerical modelling of destruction of 5 bundlees{beams} with uniform distribution of durability of fibres: 
Estimation of an exponent in distribution of packages (), 

Share of packages of volume 1 (), a share of packages of volume 2 (), a share of packages of volume 3 ()
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It is visible, that portion of unit volume packages significantly decreases in due course while portion of 
packages with volume 2 and 3 increase in process of system approach to the total collapse. The form of 
diagrams for ∆ =2 (Fig. (b)) is especially characteristic. One can observe steady presence of the marked 
maximum of double packages’ portion shortly before an avalanche. Time from passage of this maximum 
before an avalanche occurs makes on the average 10 % from full duration of destruction process for fiber 
bundles of the first type.

Fig. 6. Results of numerical modelling of destruction of 5 bundlees{beams} with uniform distribution of durability of fibres: 
Estimation of an exponent in distribution of packages (), 

Share of packages of volume 1 (), a share of packages of volume 2 (), a share of packages of volume 3 ()

Fig. 7. Results of numerical modelling of destruction of 5 bundlees{beams} with вейбулловским distribution  
of durability of fibres: an estimation of a parameter 

Degrees in distribution of packages (), a share of packages of volume 1 (), 
Share of packages of volume 2 (), a share of packages of volume 3 ()
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It is important to note, that characteristic forms of corresponding trajectories are also typical for fiber 
bundles of the second type. Similar dependences for the case of Weibull distribution are presented in 
Fig. 7. Properties of trajectories’ monotony and relative size of time pause between passage of maximum 
of double packages’ portion and the moment of system collapse are held true for fiber bundles of the 
second type.

Under the described universality, the given empirical observation can serve as one of criteria of an 
avalanche forecasting in considered bundle model. At receiving in real time (on a course of destruction) 
points of discrete trajectory for ∆ =2, it is offered to initiate warning about avalanche approach immediately 
after passage of a local maximum of double packages’ portion. In addition to that, absolute size of time 
which has remained up to an avalanche, is offered to estimate (in conditions when N is not known, and 
estimation of destruction process duration a priori is impossible) by comparison of the form of trajectories 
for ∆ =1, 3, received in real time, with the form of trajectories obtained from modeling examples. Based 
on the comparison it is necessary to make scaling of X-axis on discussed diagrams. 

As to sharp jump of estimated value α, which is really observed (Fig. 4,a; 5,a; 6,a), it occurs directly 
ahead of an avalanche and cannot help to forecast the moment of system collapse approach with reserve 
of time.

The conclusion

The investigation based on statistical processing of numerical experiments’ results on modeling process 
of Daniels fiber bundle destruction some regularities relating change in time (in process of load increase) 
of destruction packages’ portion of small volume in total of registered packages have been revealed. It 
is empirically shown, that at sufficiently big size of a bundle, change diagrams in packages’ portion of 
volume ∆ =2 in relation to the total number of packages recorded in the current observation window, have 
the marked maximum shortly before an avalanche. Preliminary estimations show, that the section from 
a point of maximum till the moment of avalanche beginning makes about 10 % of the total destruction 
process duration. In addition to that there are bases to assume universality of the given criterion of an 
avalanche forecasting in fiber bundle model as this value has appeared identical to both types of consid-
ered strength distributions of fibers – uniform and Weibull distributions, and it is realized for bundles of 
various volume and at use of observation windows of various length.

An interesting problem consists in check of hypothesis that at unlimited growth of a bundle volume, 
maxima will arise also on diagrams of packages’ portion of volume ∆> 2, and the bigger the value ∆ is, 
the closer we are to the moment of an avalanche. Confirmation of this hypothesis would allow building 
similarity of the hierarchical plan for system collapse forecasting.

Among other possible directions of further work, it is possible to single out checking of similar regu-
larities in more complex models, in particular, bundle models with other types of load redistribution, 
models of non-uniform bundle (i.e. containing fibers with various statistical properties) [17], hierarchical 
models of tree type.
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