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Abstract. Aim.The paper analyzes the functional survivability of structurally complex technical 
systems. This approach is the evolution of the structural survivability paradigm, when the sys-
tem/element failure criterion is binary. The paper shows that given a wide variety of probabilis-
tic scenarios of adverse effects (AE) on a system, an invariant model kernel is identified that is 
responsible for the interpretation of functional redundancy. The aim is to identify the proportion 
of retained operable states within the acceptable computational time, when the fixed number u 
of elements is disabled as the result of AE. In this case the analysis of survival law is conducted 
at the confluence of functional redundancy analysis and probabilistic AE models of arbitrarily 
wide variety. Methods. A technical system is considered a controllable cybernetic system 
equipped with specialized survival facilities (SF). System survivability analysis uses logic and 
probabilistic methods, as well as the results of the combinatorial theory of random allocation. 
It is assumed that: a) AE are localized and single (one effect affects exactly one element); b) 
each of the system’s elements has a binary logic (operability – failure) and zero resilience, 
i.e. destruction after one effect is guaranteed. Subsequently this assumption is generalized 
for the case of r-fold AE and L-resilient element. Results. The paper reconstructs a number 
of variants of the destruction law and survivability functions of technical systems. It is identi-
fied that those distributions are based on prime and generalized Morgan numbers, as well 
as Stirling numbers of the second kind that can be recovered using the simplest recurrence 
formulas. While the assumptions of the mathematical model are generalized for the case of 
nr-fold AE and L-resilient elements, the generalized Morgan numbers involved in the estima-
tion of the destruction law are identified using the random allocation theory by means of n-fold 
differentiation of the generating polynomial. In this case it does not appear to be possible 
to establish a recursive relation between the generalized Morgan numbers. It is shown that 
under homogeneous assumptions regarding the survivability model (equally resilient system 
elements, equally probable AEs) in the correlation kernel for the system survivability function, 
regardless of the destruction law, is the functional redundancy vector F(u, ε), where u is the 
number of affected elements, ε is the system’s limiting efficiency criterion, below which its 
functional failure is diagnosed, F(u, ε) is the number of system states operable in terms of ε 
under u failures (destructions) of its elements. Conclusions. Point models of survivability are 
an excellent tool of express analysis of structurally complex systems and tentative estimation 
of survivability functions. The most simple assumptions of structural survivability can be gen-
eralized in cases when the system’s operability logic is not binary, yet is associated with the 
level of system operation efficiency. In this case we must speak of functional survivability. The 
PNP computational complexity of the survivability evaluation problem does not allow solving it 
by means of a simple enumeration of the system states and AE variants. Ways must be found 
of avoiding simple enumeration, e.g. by using conversion of the system operability function 
and its decomposition by means of generalized logical and probabilistic methods.
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Introduction.

In [1-3], technical survivability is defined as the property 
of a structurally complex technical system to maintain its 
operability under a wide spectrum of adverse effects (AE). 
If we talk about survivability as a function of structural 
redundancy, it is a case of structural survivability. If the 
system’s functional efficiency and capability to maintain at 
least a part of its functionality are evaluated, then we talk 
about functional survivability.Our understanding is that 
structural survivability is a special property of functional 
survivability that is primarily ensured by the presence of 
structural redundancy features in the system along with 
specialized survivability facilities (SF).

At this point we must specify some terms. First, let us 
compare the categories of “dependability” and “surviv-
ability”. From our perspective, the conceptual separation 
of the above properties is along the line of the causes of 
operability deterioration and associated reduction or com-
plete loss of functional efficiency of a technical system. In 
dependability those are strictly internal reasons that cause 
failures and faults; in survivability those are strictly internal 
reasons of operability deterioration (destruction)of indi-
vidual elements. “Destruction” can be understood as either 
failures and faults or direct destruction of elements caused 
by AE. Large systems energy engineers do not agree with 
this terminological separation (in their practice survivability 
per [4] is an individual special property of dependability]. 
Computer system developers also think that survivability is 
a special case of dependability (e.g. see [5, p. 179]); there, it 
is synonymous with fault-tolerance. In this paper we ignore 
the above differences and understand survivability the way 
stated above.

We also must separate the definitions of structural and 
functional survivability. A similar separation is made in 
[6,7] in the context of information systems dependability. 
I.B. Shubinsky believes that structural dependability is the 
dependability of products (objects, elements, systems), 
while the functional dependability is the dependability of 
service provision (performance of the processes of collec-
tion, processing, transmission of information, management 
of subordinated objects). We do not completely agree with 
this dichotomy, at least as regards technical systems. Stated 
above is, in our opinion, the functional dependability in 
the narrow sense. But, if we associate the property of the 
system’s functional dependability with the property of its 
efficiency, the structure evidently contributes to the property 
of functional dependability. If dependability is not ensured 
at the level of system components, if the available structural 
redundancy is not properly managed, functional depend-
ability is not ensured either. It turns out that functional 
dependability that is understood in the wide sense contains 
specific properties of structural dependability and functional 
dependability in the narrow sense. Equally, structural surviv-
ability is a separate specific property of functional surviv-
ability in the wide sense, as we noted at the very beginning 
of the paper.

The interpretation that we indirectly propose is substanti-
ated as part of functional survivability standardization. Such 
standardization goes down two lines: the line of standard 
accepted efficiency and the line of maximum allowed 
probability of system survival. The harder is the standard 
requirement for the maximum allowed (from below) level of 
retained system efficiency after AE, the lower is the expected 
structural redundancy in the course of survival, the lower 
will be the survival probability and the harder must be the 
requirements for SF (that are formally only assigned to the 
technical system and are not its components). Naturally, 
the opposite is also true: the softer are the requirements for 
efficiency, the higher is the contribution of the structural 
redundancy into the system’s survival.

Here the line must be drawn between the structural and 
functional redundancy in the narrow sense. In [6, p. 18], 
redundancy is a property of most existing technical objects 
(systems) to perform more functions than required and 
have more resources than required for the performance 
of only the required functions. In our opinion that is the 
definition of the functional redundancy in the wide sense 
that encompasses structural redundancy and functional re-
dundancy in the narrow sense (as the capability to perform 
the same work using different means [6, p. 48]). The level 
of functional redundancy in the wide sense is defined in 
close connection with the standard level of efficiency. For 
example, if during a special period it is required to maintain 
10% of output capacity of a power system after AE (level of 
emergency reserve), that corresponds to the maximum level 
of functional redundancy accumulated by the system under 
normal operational conditions. 

Let us touch upon the subject of integration of various 
types of redundancy for the purpose of survivability (in [6] 
such integration is called multilevel redundancy). Struc-
tural redundancy and functional redundancy in the narrow 
sense always act together. A separate role is played by the 
information and algorithmic redundancy concentrated in 
the object’s systems control supersystem. As regards the 
redundancy of the SF, it is localized outside the technical 
system. For instance, in the context of special military facili-
ties, appropriate SFs are assigned to all technical systems 
within the facility together, rather than being part of one of 
the systems. Accordingly, we cannot assert that redundancy 
within a system and redundancy of the SFs are integrated for 
the purpose of ensuring system survivability. They operate in 
different ways, which can be clearly seen during simulation 
(we will emphasize it further).

Given the above, the indicator of functional redundancy 
should be the probability R(n, ε) of the system retaining func-
tional efficiency at level ε in fractions of its standard level 
under n AEs [2, 3]. The derived indicator of structural sur-
vivability as a separate special property is probability [2, 3].

The central methodological problem of the survivability 
science is the fact that AEs are not stochastic, manifest them-
selves as single events that cannot be interpreted in terms 
of the classic probability theory. Changing from statistical 
to axiological probabilities in the curse of AE scenario 
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definition is a makeshift solution that is used temporarily 
for the purpose of identifying the property of survivability. 
In whole, the probabilistic concept of survivability as at the 
decline. In the new scientific paradigm there are two main 
approaches to survivability analysis:

• transition from probabilistic description of AEs and 
system’s reaction to AEs to fuzzy set models. This subject 
requires separate consideration and it is not examined in 
this paper;

• designing a feasible AE test of system (not assuming 
high accuracy of real AE simulation) and associating the 
designed AE tests and the system’s reaction to it. The pur-
pose of such simulation experiment is to make the system 
manifest its survivability property and quantify the degree 
of this property’s manifestation. In this case the system will 
primarily demonstrate the structural and functional types of 
redundancy.In other words, it will degrade due to AE not 
immediately, but gradually while retaining some resilience 
to the effects. Among other things, such gradual degradation 
will be ensured by efficient algorithms of system reconfigu-
ration and exclusion of destroyed fragments (manifestation 
of functional redundancy in the narrow sense).

As of today, the most evident scientific results have been 
achieved with the proposal of the so-called point model 
of AE, when the AE is aimed at destroying an individual 
system element that has binary operation (operability or 
failure). This model can be easily generalized for the case 
of r-fold AEs for the case of a system with L-resilient ele-
ments [8]. In this paper we will demonstrate the application 
of this approach. 

Thus, the aim of this paper is to establish the connection 
between functional survivability and redundancy in struc-
turally complex systems by identifying this connection by 
means of AE tests of two types:

• independent strategy: AE against a system element 
can repeat;

• dependent strategy: a system element previously af-
fected by AE cannot be targeted by AE again.

This paper examines equally probable AEs (in the axi-
ological sense), i.e. there is no AE preference pattern. It can 
be compared to a system with homogeneous dependability, 
in which the elements have the same probability of no fail-
ure. We can generalize this result for the case of different 
AE probabilities in an exhaustive event, but it will in no 
way contribute to the aim of this paper. Additionally, we 
are ready to prove the redundancy that we have identified 
will manifest itself under a wide spectrum of AEs, and the 
redundancy monotonicity of survivability (the more 
redundant is the system, the more survivable it is) will be 
scientifically substantiated.

A brief description of the approach to 
survivability analysis used in this paper

There is a well-known Shannon’s formula of reliability of 
structurally complex homogeneous non-renewable technical 
systems [9, p.161]:

 P(t) = FN(0)*p(t)N + FN(1)* p(t)N-1(1- p(t)) + …  

 + FN(N-1)* p(t)(1 – p(t))N-1, (1)

wheret is the reliability evaluation period, p(t) is the prob-
ability of no failure of an individual system element, FN(u), 
u = 0…N is the number of operable system states under the 
condition that u of its elements simultaneously failed within 
the period of reliability evaluation t. Also, in the depend-
ability theory FN(u) is the number of disconnecting sets 
consisting of u elements. We can also write FN(u) = FN(u, 
ε=1) while making provisions for the possible extension of 
the given structural model to the level functional redundancy 
in a general sense.

Formula (1) can be rewritten as follows:

 P(t) = , (2)

where 

 PrN(t,u) = {p(t)}u(1-p(t))N-u –  (3)

isthe unconditional probability law of occurrence in a 
system of N elements of exactly u failures within time t 
(naturally, here the binomial distribution law is a standard 
Bernoulli scheme), and

  = FN(u) /  –  (4)

isconditional probability that the system remains opera-
tional if u random elements are removed from it.

Formula (4) can be named the law of degradation (for the 
case of dependability) or the law of destruction (for the case 
of survivability). That is the model of how natural failures 
or AEs are distributed in the system and cause degradation 
of its structure and functionality.

Let us return to the problem of functional survivability 
analysis. If the AE strategy is dependent (elements are 
chosen in the system consecutively, one after another), the 
survivability function is the probability of retention by the 
system of its operability under n single AEs [1-8]: 

 R*(n, ε) = f(n, ε) = FN(n, ε) / 
 
. (5)

The * sign indicates that the survivability was evaluated 
on the assumption of dependent strategy. Naturally, in case of 
dependent strategy n ≤ N. We can rewrite (5) as follows:

 R(n, ε) = , (6)

where  is defined out of (4), with extension for 
the case ε < 1, while PrN(n, u) is the destruction law for the 
case when under n AEs exactly u out of N system elements 
are affected is determined using formula:
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 PrN (n, u) =  (7)

If the AE strategy is independent, the number n can be 
arbitrary and in this case the law of destruction formula is 
correct [1-8]:

 PrN (n, u) =N-n * 
 
*M (n, u) =  

 = N-n * * , (8)

where M(n, u) are Morgan’s combinatorial numbers. 
For combinatorial Morgan’s numbers partition, equation 
[6] is true:

 
. (9)

Destruction law (8) can be developed for the case of r-fold 
AE, when the scope of a single AE simultaneously covers 
r elements. In this case [4]

 PrN (n, u, r) =
 

* 
 
*M (n, u, r) =  

 = * 
 
* , (10)

whereM(n, u , r) are generalized Morgan’s numbers for 
the case of r-fold AEs. As with (9), a combinatorial set can 
be written: 

 
 (11)

Distribution of type (10) could be named a Markov-
Nedosekin distribution, as A.A. Markov first suggested an 
individual specific case of this distribution (quoted per [18]), 
while A.O. Nedosekin first formulated this generalization 
[14]. Out of (10) under r = 1 easily follows (8).

If we make another round of generalization and assume 
that elements have a determinate resilience L to adverse ef-
fects, i.e. are destroyed exactly after (L+1) strikes, then (8) 
and (10) rewrite as follows:

 PrN (n, u, r, L) = * 
 

* * , (12)

where K = ,  are generalized Morgan’s 

numbers for the case of r-fold AEs and L-resilient ele-
ments, and

 Q (n, K, ω, L) = {(et – g(t, L))ω*(g(t, L))K-ω}|t=0,  

 g(t, L) =  . (13)

Result (13) was obtained by A.O. Nedosekin in [8] us-
ing the method of generating functions in noncommutative 
nonsimmetrical K-basis with n-samples [17, p. 222].

If r = 1, formula (2) after a series of combinatorial trans-
formations becomes as follows:

 PrN (n, u, r, L) = N-n *  

 = N-n *  (14)

Finally, by substituting L = 0 into (14), in the course of 
a series of transformations we obtain standard Morgan’s 
operands of the form (8). In this particular case the follow-
ing is true:

 M (n, u) = (et – 1)u|t=0 . (15)

If we compare formulas (2) and (6), we will see a certain 
conceptual invariant. Functional redundancy in the system 
is demonstrated by vector FN(u, ε) or conditional probability 
of the form (4), which is identical. The application to such 
redundancy of the corresponding law of degradation or 
destruction of the form (3), (7), (8), (10) or (12) generates a 
corresponding probability response in the system. AE laws 
change, the system’s responses to AEs change, but the kernel 
of the model, the redundancy vector, remains unchanged. 
Therefore, our primary aim is to establish the form of the 
redundancy vector for a milti-element structurally complex 
system. When the redundancy vector has been established, 
evaluating the probability of system survival for various AE 
scenarios though is a technical problem 

It also must be noted that the property of element resil-
ience characterized by parameter L is in fact not a property of 
the element itself, but rather an attribute of the survivability 
facilities that are intended to provide the system with the 
properties of resilience. For example, in terms of system 
survivability under seismic impacts, the vibroplatform on 
which elements of the technical system are installed (one, 
several or all) has the resilience property. Such platform 
must be able to withstand an impact characterized by an 
acceleration multiple of g (gravity factor). If the impact is 
divisible by (L+1), the vibroplatfrom partially loses stability 
and is destroyed, while the elements installed upon it are 
either destroyed or loose connection to the system, which 
is equivalent in terms of the consequences. The multidi-
rectional manifestation of structural dependability and 
resilience can be indirectly observed in formulas (6) and 
(12), where the structural redundancy is associated with 
one of the probabilities, while the resilience is associated 
with the other.
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Here, we put the emphasis on the fact that identify-
ing the redundancy vector is not an easy task at all. It 
is NP-hard [3], as it is associated with complete enu-
meration of 2N system states with the division of such 
states into two classes, i.e. functionally operable and 
functionally fallible. The general logical and probabi-
listic method (GLPM) comes to help though [11, 12]. 
It allows overcoming the “curse of dimensionality” 
by means of methods of decomposition of the initial 
logical operabilityfunction (LOF) with its preliminary 
identification based on the formalization of the system 
operation rules, with the identification of the full list of 
operability paths and minimal failure cross-sections. In 
today’s conditions of industrial automation, this work is 
performed by the ARBITR software system (developed 
by SPIKSZMA, Saint Petersburg, Russia). The scientific 
component of the system was developed by the school 
of Prof. A.S. Mozhaev.

Thus, let us proceed to the multivariant analysis of sur-
vivability using the examples of two trial computational 
schemesand formulas (4) – (15). In order to simplify the 
demonstration, let us assume that ε = 1, i.e. we are solv-
ing the problems of structural survivability in particular 
by evaluating the effect of structural redundancy on the 
survivability. Examples for the case when ε < 1 can also 
be easily provided. The results will be published in the 
following papers.

Analysis of structural survivability 
for three calculation examples

Example 1. Bridge-type structure system (N = 5 ele-
ments)

Let the system have a two-pole operability model (bridge-
type, Figure 1), for which the operability function is as 
follows [3, 9, 12]:

.  (16)

Figure 1. Bridge-type structure system

In this example 1, as the complete number of system 
states is 25 = 32, all states can be easily enumerated manu-
ally in order to choose the operable ones (16 in total). The 
redundancy vector and conditions probability of the form 
(4) are given in Table 1.

The survival law R*(n)for dependent AE strategy is the 
last column of Table 1 on the assumption that n = u. In order 
to perform the analysis for dependent AE strategy let us first 
recover the table of Мorgan numbers per (8) for N = 5. The 
data is given in Table 2.

Table 2. Morgan numbers M5 (n, u)

n
M5 (n, u), u = 0…5

u = 0 u = 1 u = 2 u = 3 u = 4 u = 5
1 0 1 0 0 0 0
2 0 1 2 0 0 0
3 0 1 6 6 0 0
4 0 1 14 36 24 0
5 0 1 30 150 240 120
6 0 1 62 540 1560 1800
7 0 1 126 1806 8400 16800

The data in Table 2 is used together in calculations ac-
cording to formulas (6) and (8). The values of R(n) in case 
of n≤ 7 are given in Table 3.

Table 3. Function R(n)

n 1 2 3 4 5 6 7
R(n) 1 0.8400 0.5200 0.3024 0.1744 0.1012 0.0592

As an integral factor that can be used as a proper convo-
lution of the redundancy vector, the mean number of AEs 
that causes the loss of operability in case of dependent AE 
strategy the following can be used: 

 . (17)

In the case of bridge-type structure,  = 3. That means 
that the system can be intentionally disabled at an average 
with three strikes. In order to remove the N-dependence 
in choosing the optimal survivability design solution, the 
system survivability index (SI) can be used:

 SI =  / N. (18)

In our case SI = 0.600. To understand whether that is much 
or little, many networked systems must be evaluated. Such 
evaluations are not within the scope of this paper. However, 

Table 1. Redundancy vector and conditions of prob-
ability of operability per case 1

u FN(u) Number of combi-
nations of N by u

0 1 1 1
1 5 5 1
2 8 10 0.8
3 2 10 0.2
4 0 5 0
5 0 1 0
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formula (18) is another example of a distinct connection 
between structural redundancy and survivability.

Let us now complicate the problem definition. Let us 
assume that in one AE r = 2 elements are simultaneously 
affected. In this case the use of formula (10) results in the 
destruction law as shown in Table 4.

Table 4. Destruction law Pr5 (n, u, r=2)

n
Pr5 (n, u, r=2), u = 0…5

u = 0 u = 1 u = 2 u = 3 u = 4 u = 5
1 0,000 0,000 1,000 0,000 0,000 0,000
2 0,000 0,000 0,100 0,600 0,300 0,000
3 0,000 0,000 0,010 0,240 0,570 0,180
4 0,000 0,000 0,001 0,078 0,489 0,432
5 0,000 0,000 0,000 0,024 0,340 0,635
6 0,000 0,000 0,000 0,007 0,219 0,774
7 0,000 0,000 0,000 0,002 0,136 0,862

The combined application of (6) and (10) results in the 
values of R(n) shown in Table 5. Naturally, in case of square 
independent AEs the system degrades faster that in the case 
described in Table 3.

Table 5. Function R(n)

n 1 2 3 4 5 6 7
R(n) 0,8000 0,2000 0,0560 0,0164 0,0049 0,0015 0,0004

Example 2. Three-generator electric energy system  
(N = 10 elements)

[13] and [11] describe a three-generator electric energy 
system (EES, Figure 2). Its operability diagram is shown 
in Figure 3.

The operability function established based on the diagram 
in Figure 3 is as follows [11, p. 30]:

  (19)

The total number of operable states in the diagram is 
554 of 210 = 1024. By making a complete enumeration of 
system functions per LOF of type (21) we arrive at Table 
6 that contains the redundancy vector. According to this 
definition of the problem, all effects are single, while the 
system’s elements have zero resilience.

The destruction law per example 2 is shown in Table 7; 
the survival law for the independent AE strategy is shown in 
Table 8. For the case of Example 2 we also have  = 5.737, 
SI = 0.574. As we can see, the “specific survivability” of 
EES of Example 2 turns out to be even slightly lower than 

the bridge-type structure’s. We can speak of redundancy con-
centration, when the growing number of elements does not 
cause qualitative improvements to the system’s survivability 
performance. Nevertheless, due to the growing hardware 
component, the AE-related system degradation is smoother 
than that of the bridge-type operability logic. 

Table 6. Redundancy vector and conditional prob-
ability of operability per example 2

u FN(u) Number of combi-
nations of N by u

0 1 1 1.000
1 10 10 1.000
2 45 45 1.000
3 116 120 0.967
4 175 210 0.833
5 137 252 0.544
6 57 210 0.271
7 12 120 0.100
8 1 45 0.022
9 0 10 0.000
10 0 1 0.000

Conclusion

The structural survivability know-how developed by 
Soviet/Russian scientist over the last 30 years significantly 
help achieving a new level of modeling and analysis of 
survivability and resilience of complex systems (not nec-
essarily technical ones). The primary goal is the transition 

Figure 2. Three-generator EES diagram.Source: [11]

Figure 3. EES operability diagram.Source: [11]
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from structural to functional survivability. The first steps in 
this direction have already been made [14-16], however the 
work must continue with the aim of automatic construction 
of LOF for multiple systems with arbitrary performance 
criteria. By changing the level of retained efficiency ε, at 
the stage of manual search already it can be observed that 
as ε grows the level of available structural and functional 
redundancy slowly goes down. Manual search should be 
abandoned through automated construction and examination 
of a set of LOFs responsible for various levels of required 
efficiency ε.

Secondly, AE scenario tolerances should be formulated 
more strictly. That involves progressive replacement of 
probabilistic combinatorial models with their simplistic 
hypotheses of effects on models, where the effect is formu-
lated in terms of the adverse factors themselves. In this case 
fuzzy logic AE modeling suggests itself, as well as elements’ 
resilience to effects, including the efficiency of survivability 
facilities. That is the subject of our future activities.
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8 0.000 0.000 0.000 0.007 0.086 0.318 0.402 0.169 0.018 0.000 0.000
9 0.000 0.000 0.000 0.002 0.039 0.210 0.400 0.279 0.065 0.004 0.000

10 0.000 0.000 0.000 0.001 0.017 0.129 0.345 0.356 0.136 0.016 0.000
11 0.000 0.000 0.000 0.000 0.007 0.075 0.271 0.387 0.216 0.042 0.000
12 0.000 0.000 0.000 0.000 0.003 0.042 0.200 0.379 0.289 0.081 0.000
13 0.000 0.000 0.000 0.000 0.001 0.023 0.141 0.346 0.345 0.130 0.000
14 0.000 0.000 0.000 0.000 0.001 0.012 0.096 0.298 0.379 0.186 0.000
15 0.000 0.000 0.000 0.000 0.000 0.006 0.064 0.247 0.393 0.244 0.000

Table 8. Function R(n)

n R(n) n R(n)
0 1 8 0.2509
1 1 9 0.1490
2 1.0000 10 0.0849
3 0.9760 11 0.0469
4 0.9016 12 0.0253
5 0.7720 13 0.0134
6 0.5850 14 0.0070
7 0.3987 15 0.0036
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