
3

Fault tree analysis in the R programming environment.
Treatmentof common cause failures
Alexander V. Antonov, JSC RASU, Moscow, Russia
Evgeny Yu. Galivets, JSC RASU, Moscow, Russia
Valery A. Chepurko, JSC RASU, Moscow, Russia
Alexey N. Cherniaev, JSC RASU, Moscow, Russia

Abstract. Aim. This paper is the continuation of [1] that proposes using the R programming
language for fault tree analysis (FTA). In [1], three examples are examined: fault tree (FT)
calculation per known probabilities, dynamic FT calculation per known distributions of times
to failure for a system’selements. In the latter example, FTA is performed for systems with
elements that are described by different functional and service models. Fault tree analysis
(FTA) is one of the primary methods of dependability analysis of complex technical systems.
This process often utilizes commercial software tools like Saphire, Risk Spectrum, PTC Wind-
chill Quality, Arbitr, etc. Practically each software tool allows calculating the dependability of
complex systems subject to possible common cause failures (CCF). CCF are the associated
failures of a group of several elements that occur simultaneously or within a short time interval
(i.e. almost simultaneously) due to one common cause (e.g. a sudden change in the climatic
service conditions, flooding of the premises, etc.). An associated failure is a multiple failure of
several system elements, of which the probability cannot be expressed simply as the product
of the probabilities of unconditional failures of individual elements. There are several generally
accepted models used in CCF probability calculation: the Greek letters model, the alpha, beta
factor models, as well as their variations. The beta factor model is the most simple in terms of
associated failures simulation and further dependability calculation. The other models involve
combinatorial search associated events in a group of n events, that becomes labor-consuming
if the number n is large. Therefore, in the above software tools there are some restrictions
on the n, beyond which the probability of CCF is calculated approximately. In the current R
FaultTree package version there are no above CCF models, therefore all associated failures
have to be simulated manually, which is not complicated if the number of associated events is
small, as well as useful in terms of understanding the various CCF models. In this paper, for
the selected diagram a detailed analysis of the procedure of associated failures simulation is
performed for alpha and beta factor models. The Purposeof this paper consists in the detailed
analysis of the alpha and beta factor methods for a certain diagram, in the demonstration of
fault tree creation procedure taking account of ССF using R’s FaultTree package. Methods.
R’s FaultTree scripts were used for the calculations and FTA capabilities demonstration. Con-
clusions. Two examples are examined in detail. In the first example, for the selected block
diagram that contains two groups of elements subject to associated failures, the alpha factor
model is applied. In the second example, the beta factor model is applied. The deficiencies of
the current version of FaultTree package are identified. Among the main drawbacks we should
indicate the absence of some basic logical gates.

Keywords: fault tree, fault tree analysis, CCF, total cause failure, independent failures, de-
pendent failures, antithetic events, alpha factor, beta factor.

For citation: Antonov AV, GalivetsEYu, Chepurko VA, Cherniaev AN. Fault tree analysis in the
R programming environment. Accounting for common cause failures. Dependability 2018; 3:
3-9. DOI: 10.21683/1729-2646-2018-18-3-3-9

Dependability, vol. 18 no.3, 2018
Original article
DOI: 10.21683/1729-2646-2018-18-3-3-9

Alexander V.
Antonov

Evgeny Yu. Galivets

Valery A. Chepurko

Alexey N. Cherniaev

Dependability, vol. 18 no.3, 2018. Structural dependability. Theory and practice

4

Introduction

This paper is the continuation of [1] dedicated to the
overview of the capabilities of the FaultTree package
developed for the R programming environment. R is a pro-
gramming language for statistical processing of graphics,
as well as a free open-source programming environment
developed as part of the GNU project. R supports a wide
range of statistical and numerical methods and a large
number of extension packages. Packages are libraries that
support specific functions and subprograms or special ap-
plications. The paper continues the analysis of the capabili-
ties of the package for creation, calculation and output of
fault trees, the FaultTree package, in terms of the common
cause failures (ССF).

Fault tree analysis (FTA) is a method of complex systems
dependability analysis, in which the system failures are ana-
lyzed using the methods of Boolean algebra, summarizing
the sequence of the subordinate events (low level failures)
that cause the failure of the entire system. Sequences of
random events are identified that may cause the system
to fail, ways of reducing risks are defined and the rates of
system failures are determined. In the most simple cases the
fault trees form independent events. However, situations are
possible when failures occur due to common causes, i.e. de-
pend on a certain internal or external factor. Internal factors
include general design, process and other internal causes,
external factors include the effects of natural phenomena
and/or human activity [2-4].

Calculations of CCF probabilities commonly involve
various mathematical models that establish linear connection
between the probabilities of dependent failure of a subset
of elements affected to CCF with the probability of failure
due to total causes. Failure due to total cause is essentially
a complete group that includes independent failures of each
element, CCF of two, three, etc. elements. The sufficiently
simple, from the implementation point of view, beta factor
model implies that in a set of elements exposed to CCF
the failures can only be of two types: independent single
failures of elements and dependent CCF of the entire group
occurring simultaneously or almost simultaneously. In this
case these events can be easily introduced into the fault tree
manually. It should be taken into consideration that they
must be incompatible, i.e. the connecting logical operations
must make allowance for this fact. Under relatively low
probabilities of failure, operator “or” can be used, while the
calculation error is small.

The beta factor model is a special case of the more
common Greek letters and alpha factor models. Let us note
that the latter has several modifications. The basic differ-
ence between the generalized models and the beta factor
model is that dependent failures can affect any subsets
out of a set of elements affected by CCF. The choice of
such subsets must be substantiated by the fact that their
combination must cause system failure. It is clear that in
this case we are dealing with a combinatorial enumeration
of such situations, that, in case of small size of the set

(two, three elements) can be done manually. However, if
the set is large, computer technology has to be used, more
precisely specialized software products: Windchill PTC,
Risk Spectrum, Arbitr, etc. In the software tools there are
some restrictions on the size of sets, beyond which the
calculations are conducted approximately. That is due
to the fact that as the size of the set of elements affected
by CCF grows, the computational costs increase incom-
mensurably.

As to the FaultTree package, its current version does not
yet have CCF calculation models, therefore in the general-
ized models all enumerations have to be performed manu-
ally. That causes other problems associated with a deficiency
in the required logical operations and/or event categories
thatwill be covered in this article.

Let us examine some basic ССF capabilities supported
by FaultTree.

Treatment of common cause failures

For the purpose of demonstrating the CCF capabilities,
let us consider four different models: beta factor, alpha fac-
tor (with staggered and non-staggered tests) and the Greek
letters model [5-7]. As the initial scheme let us consider the
circuit shown in Figure 1 as per [1].

Figure 1. System diagram

Let us assume that the elements of group A (A1, A2, A3)
and the elements of group B (B1, B2) may fail due to com-
mon causes. Let us introduce the following designations:

I1(A), I2(A), I3(A) are independent (single) failures of the
elements of group A;
С12(A), С23(A), С13(A) are the CCFs of exactly two ele-

ments of group A;
С123(A) are CCFs of all thee elements of group А;
I1(B), I2(B) are independent failures of elements of group В;
С12(B) are CCFs of all the elements of group B;
F(C) is the failure of element C.
The basic parametric model of CCF analysis determines

the following events:
1t(А)= I1(A)+ С12(A)+С13(A)+С123(A):
2t(А)= I2(A)+ С12(A)+С23(A)+С123(A);

 3t(А)= I3(A)+ С13(A)+С23(A)+С123(A); (1)
1t(В)= I1(В)+ С12(В);
2t(В)= I2(В)+ С12(В).

For instance, the first event will indicate a failure due to
total causes related to the failure of the first element of group
A. Let us designate the probabilities of such events:

5

Fault tree analysis in the R programming environment. Treatmentof common cause failures

Qt(А)=Pr(1t(А))= Pr(2t(А))= Pr(3t(А));
Q1(А)=Pr(I1(А))= Pr(I2(А))= Pr(I3(А));

 Q2(А)=Pr(С12(A))= Pr(С13(A))= Pr(С23(A)); (2)
Q3(А)=Pr(С123(A));

Qt(B)=Pr(1t(B))= Pr(2t(B));
Q1(B)=Pr(I1(B))= Pr(I2(B));

Q2(B)=Pr(С12(B)).
Equations (2) are substantiated by that fact that hypotheti-

cally all elements of the same group are identical and are
operated under identical conditions, and, therefore, their
dependability indicators are identical as well.

Due to the incompatibility of events in the right part of
each equations (1), we obtain:

 Qt(А)= Q1(А)+2Q2(А)+Q3(А); (3)
Qt(В)= Q1(В)+Q2(В).

The probabilities of the right parts of equations (3) are
determined differently depending on specific models.

Greek letters model

Thus, for the Greek letters model the following assump-
tion is true:

 (4)

In our case if we designate: , from (4) eas-
ily follows:

 (5)

Alpha factor model (not-staggered testing)
In this case the general formula for the probabilities is

as follows:

 where (6)

For groups of 3 and 2 events, we thus obtain:

 (7)

Alpha factor model (staggered testing)
In this case the general formula for the probabilities is

as follows:

 where (8)

For groups of 3 and 2 events, we thus obtain:

 (9)

Beta factor model

One of the simplest CCF models is as follows:

 (10)

In our case we obtain:

 (11)

It is not difficult to show that by substituting (5), (7), (9),
(11) into (3) an identical equation is obtained: ,

, however, this will be definitely true under
large m as well. Thus, the difference between the approaches
employed by the models consists only in the different un-
derstanding of the correlations between the probabilities

. Frequently, different models may pro-
vide sufficiently close results. For that purpose transfer
equations can be used [5] (see Table A-2-A-4 of annex
A). In addition, [4] (Table 5.11, p. 75) provides reference
statistical information of the parameters for the alpha
factor model (8). Thus, for parallel series of two elements
B1, B2 sample medians of the parameters (50% of point)
are equal respectively

, . (12)

For subseries A of three elements A1, A2, A3

, ,

 (13)

Dependability, vol. 18 no.3, 2018. Structural dependability. Theory and practice

6

Let us take these numbers as the values of the parameters
of model (8). Probabilities (9) will be as follows

 (14)

Flow tables can be used, but it is not difficult to guess,
that in model (5)

 .

In the alpha factor model (staggered testing), a simple
transformation provides the following result:

Under the deduced values of the parameters the results
of both the alpha factor and Greek letters models will
provide identical results. For the sufficiently rough, yet
simpler beta factor model the results will be different,
since the beta factor model uses only one input parameter.
Nevertheless, let us take it identical to the corresponding
Greek letter, 0.05.

Now let us proceed to the calculations. In order to
simplify the fault tree let us avoid using different depend-
ability models for different elements, but assume that
the probabilities of failure of elements A, B and C are
respectively

 . (15)

The probability of failure without regard to the ССF will
be equal to:

 (16)

Let us perform calculations taking the CCF into account.
The circuit will fail under the following combinations of
events presented as eight minimum sections:

 (17)

Let us compose the calculation script. Unlike in the the
specialized packages mentioned above, in the current ver-
sion of the package under consideration CCF is not taken
account of, therefore all the events of (17) have to be de-
veloped and introduced manually. Let us note that in (17)
there is a group of incompatible (thus dependent) sections,

for example, the first and the second, the first and the third,
etc. There is also a group of independent sections, for ex-
ample, and , i.e. sections
belonging to different CCF groups. Correct calculation of
the probabilities of failure of this group requires using
the specialized logic node “or” that calculates the prob-
ability of a sum of antithetical events. On the other hand,
an additional type can be introduced for the group of
incompatible events contained in one CCF group. Prob-
ably, the optimal solution consists in the development of a
module for taking account of CCF, that, probably without
a graphic representation in the fault tree, would automati-
cally and correctly calculate the dependability indicators
when highlighting ССF event groups and selecting the
appropriate model. Unfortunately, such capabilities are
not yet implemented in R. Therefore, in the calculation
we will be using regular “or”.

Example 1. CCF. Alpha factor model
library(FaultTree)
tree4 <- ftree.make(type=”or”, name=”Example

4.”, name2=”CCF”)
tree4 <- addLogic(tree4, at=1, type=”and”,

name=”I1(A)*I2(A)*I3(A)”)
tree4 <- addLogic(tree4, at=2, type=”inhibit”,

name=”Independent”, name2=”failure Ai”)
tree4 <- addProbability(tree4, at=3,

prob=.95, name=”Parameter”, name2=”models”)
tree4 <- addProbability(tree4, at=3, prob=.3,

name=”Failure Ai”, name2=”(total)”)
tree4 <- addDuplicate(tree4, at=2, dup_

id=3)
tree4 <- addDuplicate(tree4, at=2, dup_

id=3)
tree4 <- addLogic(tree4, at=1, type=”and”,

name=”Ii(A)*Cjk(A)”)
tree4 <- addDuplicate(tree4, at=12, dup_

id=3)
tree4 <- addLogic(tree4, at=12,

type=”inhibit”, name=”CCF”, name2=”failure
Aj, Ak”)

t r e e 4 < - a d d P r o b a b i l i t y (t r e e 4 ,
at=16, prob=.0121, name=”Parameter”,
name2=”models”)

tree4 <- addProbability(tree4, at=16, prob=.3,
name=”Failure Ai”, name2=”(total)”)

tree4 <- addDuplicate(tree4, at=1, dup_
id=12)

tree4 <- addDuplicate(tree4, at=1, dup_
id=12)

t r e e 4 < - a d d L o g i c (t r e e 4 , a t = 1 ,
type=”inhibit”, name=”CCF C123(A)”,
name2=”failure A1,A2,A3”)

t r e e 4 < - a d d P r o b a b i l i t y (t r e e 4 ,
at=33, prob=.0258, name=”Parameter”,
name2=”models”)

tree4 <- addProbability(tree4, at=33, prob=.3,
name=”Failure Ai”, name2=”(total)”)

tree4 <- addLogic(tree4, at=1, type=”and”,
name=”I1(B)*I2(B)”)

7

Fault tree analysis in the R programming environment. Treatmentof common cause failures

tree4 <- addLogic(tree4, at=36,
type=”inhibit”, name=”Independent”,
name2=”failure Bi”)

t r e e 4 < - a d d P r o b a b i l i t y (t r e e 4 ,
at=37, prob=.953, name=”Parameter”,
name2=”models”)

tree4 <- addProbability(tree4, at=37,
prob=.2, name=”Failure Bi”, name2=”(total”)

tree4 <- addDuplicate(tree4, at=36, dup_
id=37)

tree4 <- addLogic(tree4, at=1, type=”inhibit”,
name=”CCF C12(B)”, name2=”failure B1,B2”)

t r e e 4 < - a d d P r o b a b i l i t y (t r e e 4 ,
at=43, prob=.047, name=”Parameter”,
name2=”models”)

tree4 <- addProbability(tree4, at=43, prob=.2,
name=”Failure Bi”, name2=”(total)”)

tree4 <- addProbability(tree4, at=1,
prob=.1, name=”Failure C”, name2=”(total)”)

tree4 <- ftree.calc(tree4)
ftree2html(tree4, write_file=TRUE)
browseURL(“tree4.html”)

We will provide no detailed comments regarding this
script. Let us focus on lines nos. 4, 11, …. When a logical
elements is added, an inhibitory gate is used. As it is known
[5-7], in this case the output event occurs, if both input
events occur, one of which is a restraint event. The role of
condition is performed by the coefficient of the alpha, beta
factor or Greek letters model, as these coefficients really
play the role of conditional probabilities.

It would appear that calculating the beta factor model
two insignificant corrections would suffice. In the 12-th
line the probability of 0 and in the 17-th line the prob-
ability of 0.05 would need to be specified. However, in
this case the fault tree calculation results in an error due
to the fact that one of the probabilities is equal to 0. Most
probably, in the future this error will be corrected. For
now, at least two approaches are possible. One of them
consists in specifying zero probability as extremely low.
The other one is to remove the branches with a zero
probability. The following example demonstrates this
exact approach.

Example 2. CCF. Beta factor model
library(FaultTree)
tree4 <- ftree.make(type=”or”, name=”Example

4.”, name2=”CCF”)
tree4 <- addLogic(tree4, at=1, type=”and”,

name=”I1(A)*I2(A)*I3(A)”)
tree4 <- addLogic(tree4, at=2, type=”inhibit”,

name=”Independent”, name2=”failure Ai”)
tree4 <- addProbability(tree4, at=3,

prob=.95, name=”Parameter”, name2=”models”)
tree4 <- addProbability(tree4, at=3, prob=.3,

name=”Failure Ai”, name2=”(total)”)
tree4 <- addDuplicate(tree4, at=2, dup_

id=3)
tree4 <- addDuplicate(tree4, at=2, dup_

id=3)

t r e e 4 < - a d d L o g i c (t r e e 4 , a t = 1 ,
type=”inhibit”, name=”CCF C123(A)”,
name2=”failure A1,A2,A3”)

tree4 <- addProbability(tree4, at=12,
prob=.05, name=”Parameter”, name2=”models”)

tree4 <- addProbability(tree4, at=12, prob=.3,
name=”Failure Ai”, name2=”(total)”)

tree4 <- addLogic(tree4, at=1, type=”and”,
name=”I1(B)*I2(B)”)

tree4 <- addLogic(tree4, at=15,
type=”inhibit”, name=”Independent”,
name2=”failure Bi”)

t r e e 4 < - a d d P r o b a b i l i t y (t r e e 4 ,
at=16, prob=.953, name=”Parameter”,
name2=”models”)

tree4 <- addProbability(tree4, at=16,
prob=.2, name=”Failure Bi”, name2=”(total”)

tree4 <- addDuplicate(tree4, at=15, dup_
id=16)

tree4 <- addLogic(tree4, at=1, type=”inhibit”,
name=”CCF C12(B)”, name2=”failure B1,B2”)

t r e e 4 < - a d d P r o b a b i l i t y (t r e e 4 ,
at=22, prob=.047, name=”Parameter”,
name2=”models”)

tree4 <- addProbability(tree4, at=22, prob=.2,
name=”Failure Bi”, name2=”(total)”)

tree4 <- addProbability(tree4, at=1,
prob=.1, name=”Failure C”, name2=”(total)”)

tree4 <- ftree.calc(tree4)
ftree2html(tree4, write_file=TRUE)
browseURL(“tree4.html”)

Let us conduct calculations analytically. First, let us cal-
culate the alpha factor and Greek letters models. By fitting
model coefficient we obtained identical results. By virtue
of (2) and independence of events, the precise probability
of failure due to all causes (both common causes, and inde-
pendently) will be equal to

 (18)

where events {elements of group A did not fail},
{elements of group B did not fail}, {elements of the
group C did not fail}.

Since the independent failures and common cause failures
are incompatible, thus mutually dependent, then

 (19)

Numerical value 0.170350.Calculated ap-
proximate value 0.16981 (see Fig. 2).The figure
shows the incomplete fault tree with a number of “collapsed”
branches due to its awkwardness.

The logical node “or” does not take into considera-
tion the fact of dependence of minimum sections in (17)
and calculates and using the following
formulas:

Dependability, vol. 18 no.3, 2018. Structural dependability. Theory and practice

8

 (20)

For the beta factor model (10) the precise formula of
probabilities calculation and will be some-
what simpler:

 (21)

Approximation formula:

 (22)

In (21) and (22), Precise and approxi-
mated values and 0,17333 respectively.
The approximate probability matches the estimated one
(see Fig. 3).

As expected, the beta factor model turned out to be more
pessimistic.

Figure shows the fault tree with a number of “collapsed”
branches due to its awkwardness.

In conclusion, it should be noted the current version of
FaultTreehas several essential deficiencies of in terms of its
applicability in complex systems dependability calculation.

The selection of logical operations (gates) for work with
events is quite limited. Thus, there are no modules “mutu-
ally excluding or”, “priority and”, “negation”, etc. This
substantially limits the package’s capabilities.

The package does not allow duplicating a basic event in
different branches of a tree. The addDuplicate() script only
simplifies the construction of complex event trees while
duplicating branches, structure. Yet it is impossible to take
into consideration the fact of dependence, incompatibility of
events. It is not possible to “manually”, with the help of the
available logical operations, create a tree that would contain
such events. This was covered above.

Additional scripts for different models (alfa, beta factor,
Greek letters, etc.) could significantly help taking account
of CCF.

The wide range of tools of the R language allows for
more flexible setting of calculations and unlike the rigid
schemes of specialized packages enables independently
performing certain procedures with input data. And, cer-
tainly, the most important advantage of R is that unlike the
specialized packages intended for the analysis of event tree
only it provides by far more capabilities to perform data
analysis procedures.

Figure 2. Fault tree for example 4 (alpha factor model)

Example 2.
CCF (beta-factor)

1

top

Prob
1.7333e-1

I1(A)*I2(A)*I3(A)

2
Prob
2.3149e-2

CCF C123(A)
A1,A2,A3

12
Prob
1.5000e-2

Parameter
of model

13

Cond

Prob
5.0000e-2

Failure Ai
(total)

14
Prob
3.0000e-1

I1(B)*I2(B)

15
Prob
3.6328e-2

Independent
failure Bi

16

S

Prob
1.9060e-1

Parameter
of model

17

S Cond

Prob
9.5300e-1

Failure Bi
(total

18

S

Prob
2.0000e-1

Independent
failure Bi

16

R

Prob
1.9060e-1

Parameter
of model

17

R Cond

Prob
9.5300e-1

Failure Bi
(total

18

R

Prob
2.0000e-1

CCF C12(B)
B1,B2

22
Prob
9.4000e-3

Parameter
of model

23

Cond

Prob
4.7000e-2

Failure Bi
(total)

24
Prob
2.0000e-1

Failure C
(total)

25
Prob
1.0000e-1

Figure 3. Fault tree for example 4 (beta factor model)

9

Fault tree analysis in the R programming environment. Treatmentof common cause failures

Thus, the vital improvement of FaultTree package aiming
to eliminate the above shortcomings will indeed provide ex-
perts with a powerful tool for not only fault trees analysis, but
also for more advanced statistical analysis. As to the further
development of package, it should also be improved in terms
of development of functionality related to the calculation of
various importance factors according to Birnbaum, Fussell-
Vesely, etc., uncertainty analysis.

Conclusion
This paper is dedicated to the demonstration of the fault

tree construction and analysis capabilities of the actively de-
veloping statistical computing language R and its FaultTree
package. Fault trees are used for dependability analysis of
complex systems. The paper sets forth and analyses in detail
some models of ССF management, two examples are given.
In the first example, ССF is taken account of per alpha factor
model. The second example is dedicated to the beta factor
model. The deficiencies and optimal development strategy
of the FaultTree package are identified.

References
Antonov AV, Galivets EYu, Chepurko VA, Cherniaev [1].

AN. Fault tree analysis in the R programming environment.
Dependability 2018;(1):4-13. DOI: 10.21683/1729-2646-
2018-18-1-4-13

Pereguda AI, Pereguda AA, Timashev D.A. The [2].
mathematical model of computer networks’ reliability.
Dependability 2013;(4):31-43. DOI:10.21683/1729-2646-
2013-0-4-18-43

Alpeev AS. Dependability of control systems [3].
software and safety of nuclear power plants. Depend-
ability 2015;(4):78-80. DOI:10.21683/1729-2646-2015-
0-4-75-80

Ostreykovsky VA. Shvyriaev YuV. Bezopasnost’ [4].
atomnykhstantsiy. Veroyatnostnyyanaliz [Safety of nuclear
powerplants. Probabilistic analysis].Moscow: Fizmatlit;
2008 [in Russian].

Mosleh A et al. Procedures Guidelines in Modeling [5].
Common Cause Failures in Probabilistic Risk Assessment
(NUREG/CR-5485); 1998.

Programmnyy kompleks avtomatizirovannogo [6].
strukturno-logicheskogo modelirovaniya i rascheta nadezh-
nosti i bezopasnosti ASUTP na stadii proektirovaniya (PK
ASM SZMA) [Software system for automated structural and
logical modeling and dependability and safety calculation of
ACS at the design stage (PK ASM SZMA)]. Technical docu-
mentation. Saint-Petersburg: OAO SPIK SZMA; 2003.

 Smith CL, Wood ST, Galyean WJ, Schroeder JA, [7].
Sattison MB. Systems Analysis Programs for Hands-on
Integrated Reliability Evaluations (SAPHIRE). Version 8.
Vol. 2, NUREG/CR-7039 INL/EXT-09-17009; June 2011.

About the authors

Alexander V. Antonov, Doctor of Engineering, Professor,
Chief Expert, Division for Justifying Calculations of Design
Solutions, JSC RZSU, e-mail: AlVlaAntonov@rasu.ru

Evgeny Yu. Galivets, Deputy Director of Department, Head
of Design Division, JSC RASU, e-mail:EYGalivets@rasu.ru

Valery A. Chepurko, Candidate of Physics and Math-
ematics, Associate Professor, Chief Specialist, Division for
Justifying Calculations of Design Solutions, JSC RZSU,
e-mail: VAChepurko@rasu.ru

Alexey N. Cherniaev, Candidate of Engineering, Deputy
Technical Director, Director of Design Department, JSC
RASU, e-mail: AlNChernyaev@rasu.ru

Received on: 19.03.2018

