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Abstract. Among the diversity and various degrees of significance of the factors that affect 
an object’s failure flow, there is one, i.e. its “ageing,” that causes changes in the number of 
failures per time unit that makes it non-stationary (in terms of dependability). In this context, 
the elaboration of service procedures is of high importance, especially with regards to long life-
cycle objects. Methods of identifying dependability indicators of stationary objects are known 
and widely used in practice. Nevertheless, as regards non-stationary objects there are practi-
cally no generally accepted approaches to the identification of their dependability indicators 
that would be convenient for engineering calculations. Meanwhile, the analysis of publications 
dedicated to this subject given in this paper shows the relevance and potential demand for 
such methods in various technical matters. The aim of this paper is in the development of an 
analytical model of evaluation of dependability indicators of non-stationary objects. The main 
concept of the proposed approach consists in substituting the real non-stationary object with 
a virtual analogue, of which the failure flow is stationary, i.e. a formal stationarization (in terms 
of dependability) of the object occurs, which legitimizes the use of well-developed methods 
of solving stationary tasks by extending them to the cases of non-stationary objects. The ap-
proach is rough. The main problem is identifying the value of the constant failure flow rate of 
the fake object expressed through the time-dependent parameters of the “ageing” character-
istic of the real (non-stationary) object that in this paper is deemed to be known. In order to 
increase the generality of consideration, the definition of equivalent failure rate (or associated 
mean time to failure) in this paper is given for three cases: 1) The real object “ages”, i.e. its 
failure rate is an increasing function of time. Two approaches are suggested to the identifica-
tion of the equivalent failure rate: a) based on the condition of equality of the mean times to 
failure of both objects (real and fake); b) based on the condition of equality of the dependability 
functions of the objects to the predefined prediction time. For some laws of “ageing” the task 
has been solved analytically in closed form. Using the numerical example, the comparative ac-
curacy of the approaches has been evaluated. 2) The object is characterized by a piecewise 
constant failure rate that is typical to systems and devices that operate in “open” environments 
(with seasonal changes in failure rate). Both exact and approximate (in linear approximation) 
expressions for the dependability function and mean time to failure for such object have been 
obtained. 3) The object’s failure rate dependance is a piecewise constant non-periodical time 
function. Such model is sufficiently universal as after time discretization and piecewise constant 
approximation with a given accuracy many analytical time dependencies of failure rate can be 
reduced to it. Method-wise, the task is solved similarly to item 2), i.e. the non-periodic process 
is treated as a periodic one with an infinitely long period. Under the condition of reasonable 
practicality of object operation (e.g. for economic reasons) defined in this paper, expressions 
for the dependability function and mean time to failure have been obtained. The findings of 
the paper may be useful in solving the dependability-related tasks for non-stationary technical 
objects.
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Dependability indicators, i.e. probability of no-failure 
over a given time period p(t) and mean time to failure  are 
a significant criterion of a system’s (object’s) operation [1]. 
The failure rate λ(t) is the input information for the identifi-
cation of those indicators. Thus, if λ(t) is known

 
 (1)

and 

 
.  (2)

Most existing engineering methods of calculating an 
object’s dependability indicators are based on the hypothesis 
of its stationarity [1-4], i.e. assume that the rate of failure 
flow λ(t) does not change in time (λ(t)=λ0=const). In this 
case formulas (1) and (2) transform as follows:

 ;  (3)

 . (4)

Among the diversity and various degrees of significance 
of the factors that affect an object’s failure flow there is one, 
i.e. its “ageing”, that causes an increase of the number of 
failures per unit time. This circumstance cannot be ignored 
in cases of long-term operation of an object: λ stops being 
constant and becomes an increasing function of time λ(t), 
while the object essentially passes into the non-stationary 
(“ageing”) class. In this context, the elaboration of service 
procedures is of utmost importance, especially with regards 
to long lifecycle objects. That is supported by the publica-
tions that appeared over the past few years and that contain 
dependability evaluations of such socially significant fa-
cilities as water resource utilization systems of major cities 
[5], nuclear power plants [6], structures made of composite 
materials [7], etc.

A number of systems (facilities) operate in periodically 
changing conditions. In particular, waste water channel 
systems typically display a dependance between the 
failure rate and the operating season; for power supply 
systems the load is a function of different periods of 
the day. Therefore, in this case the failure rate changes 
during the day. Rolling stock of various transportation 
systems, main underground pipelines operate in periodi-
cally changing conditions.

In principle, the solution of any dependability-related 
task for a non-stationary object is algorithmically identi-
cal to a similar task for stationary objects. The difficulties 
though consist in the fact that calculations involve certain 
mathematical operations (e.g. integration) that cannot be 
performed in primitive functions. In such cases the ap-
plied dependability theory has to allow some simplifying 
assumptions in order to achieve the desired result. Those 
assumptions allow obtaining a solution in a rough analyti-
cal form that is convenient for subsequent analysis. Such 
assumptions can be conventionally grouped into several 

types. Judging by the latest publications [8-11], we can 
acknowledge the existence of a distinct type of assump-
tions that involves substituting the failure flow of a real 
non-stationary object with a fake one that in some respect 
is equivalent to the initial one and is convenient for solving 
the specific task at hand.

This paper sets forth the methods of dependability indica-
tors calculation for objects with non-stationary failure flow. 
It examines “ageing” objects, of which the rate of failure 
flow λ increases in time, objects with periodic piecewise 
constant failure rate, objects, of which the failure rate can 
be represented with a non-periodic piecewise constant func-
tion. The last case is sufficiently general, as initially the 
results of statistical failure data processing is conveniently 
represented in the above form. Additionally, analytically, 
after discretization, the given function λ(t) can always be 
represented with a given accuracy with a piecewise constant 
function of time.

For ageing objects, of which the failure rate increases in 
time, the main concept of the method consists in substituting 
the real non-stationary object with a virtual fake analogue, of 
which the failure flow is stationary and is characterized by a 
certain constant rate λc. Thus, a formal stationarization of the 
object occurs, which legitimizes the use of well-developed 
methods of solving stationary dependability-related tasks 
by extending them to the cases of non-stationary objects. 
The value λc must be “associated” with the parameters of 
the “law of ageing” of the real object λ(t) and be defined by 
certain additional considerations.

Let us examine two possible approaches to the definition 
of λc for ageing objects.

Approach 1. In accordance with this approach it is sug-
gested to find λc out of condition , where  is the mean 
time to failure of the equivalent ageing object, while  is the 
one of the real ageing object. If  is expressed through pa-
rameters λ0, α, β… of the ageing characteristic, then subject 
to (4) out of this equation we immediately obtain:

 
.  (5)

In order to demonstrate the use of this approach let us 
examine a non-stationary object, of which the failure rate 
changes in time according to law:

 , (6)

where λ0 is the initial failure rate; α is the object’s ageing 
factor (α>0).

For this case in [12], the accurate value of mean time to 
failure  is obtained that is expressed through the parameters 
of the law of ageing (6):

 
, (7)

where Ф( ) is the probability integral.
By substituting this expression into (5), for the failure 

rate of the fake stationary object λc we obtain:
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.  (8)

As we can see in (8), the numeric value λc is associated 
with λ0 and α by means of a quite complex dependence that 
is difficult to interpret in physical terms. In order to “feel” 
the characteristic features of this dependence let us find the 
coefficient:

 
,  (9)

where  is calculated in accordance with (7), 
 is the average life of the object that “ages” ac-

cording to the law (6), but under the condition α=0 (i.e. 
essentially a stationary object with the failure rate λ0). Now 
the physical meaning of γ becomes clear, i.e. this coefficient 
shows how many times the mean time to failure decreases 
in the ageing object compared to the time to failure of a 
stationary object with an identical initial failure rate. By 

Figure 1. Dependence 

Figure 2. Dependability function of real and fake objects and difference between them
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substituting this expression into (9) after some simple 
transformation we obtain:

 

.  (10)

As we can see, γ is the function of only the dimension-

less variable , which makes it possible to represent this 

dependence with one graph (Fig. 1).
The graph shows that as the value of the argument grows 

the curve tends to one, which is totally explainable: the 
higher is the value of failure rate λ0, the lower is the influ-
ence (other things equal) of the object’s ageing factor on its 
mean time to failure.

Figure 2 gives a certain idea of the concept of station-
arization. It is designed for the case of a linearly ageing 
object with the values of parameters λ0 = 0.2 [1/year] and 
α = 0.02 [1/year2].

Fig. 2 shows the graphs of the dependability functions 
of a real (ageing) object p(t) constructed using expression 
(1) subject to (6):

,  (11)

and fake stationary pc(t):

 ,  (12)

where λc is calculated using (8).
The graphs given in Fig. 2 – in terms of physics – can be 

commented in the following way. If an object’s mean time 
to failure is interpreted as a certain technical resource, then 
Fig. 2 shows that during the stationarization there is a kind 
of a formal redistribution of the probabilities of “spend-
ing” of its parts in the course of the object’s operation. The 
dependence graph Δp(t)=p(t)–pc(t) in the same figure gives 
an idea of how this redistribution occurs.

Even given its logical justifiability this approach cannot 
be used universally. The fact is that the linearly ageing object 
under consideration is a rare example, for which the mean 
time to failure can be expressed with the parameters of the 
characteristic of its ageing in the analytical form. Therefore 
it suggested to further use another approach to the definition 
of λc that is not associated with such difficulties.

Approach 2. The value of failure rate λc is identified 
based on the formula:

 ,  (13)

i.e. out of the condition of equality of the probabilities of 
no-failure of the real (“ageing”) and fake (stationary) object 
at the given moment in time tgv.

Normally, an object’s dependability is evaluated not gen-
erally, but for a certain interval Тfrc, i.e. the time of forecast 

with regard to the current moment. Then, in view of (1) and 
(10) the correlation (13) becomes as follows:

 ,  (14)

out of which we deduce the following:

 , (15)

i.e. the failure rate of the fake object is defined as the 
mean value λ(t) over the time of forecast.

By way of example let us find out how the formula for 
λc will look under the two laws of object ageing: 1) in the 
form of an n-power parabola and 2) in the form of a rising 
exponential curve.

Case 1. The failure rate of a non-stationary object is as 
follows:

 .  (16)

By substituting this dependence into (15) we have:

  (17)

In particular, if n = 1 (object considered in approach 1) 
expression (17) becomes as follows;

 . (18)

Case 2.The object “ages” according to law:

 .  (19)

Then out of (15) follows:

 .  (20)

Expressions (17), (18) and (20) show that under this 
approach λc depends not only on the parameters of the 
object’s ageing characteristic, but also on the time of 
forecast Тfrc.

The evaluation of the mean time to failure of a fake sta-
tionary object , as it follows from (5), now also becomes 
a function of Тfrc and is:

for case 1:

 ; (21)

for case 2:

 . (22)

Let us evaluate the allowable error of identification of 
the mean time to failure  of the real object for the case of 
linearly ageing object, for which  is defined by formula 
(7) [12]. We will evaluate the degree of proximity of  to 
the real value of  with the relative reduced error δT that is 
calculated according to formula:
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,  (23)

where  is calculated according to (21) (given that 
n= 1).

Under the conditions of the above numerical illustration 
(λ0= 0.2 [1/year];α= 0.02 [1/year2]) as per (7) we deduce  
= 3.79 years. The estimate for  under these parameters (as 

per (21) . By substituting these values 

into (23) we have:

 . (24)

As we can see, the relative reduced error depends on the 
time of forecast Тfrc. The values of this error are given in 
the Table 1.

Table 1

Тfrc, 
годы 1 2 3 4 5 6 7 8 9

δ , 
%

-25,64 -19,93 -14,72 -9,94 -5,54 -1,48 2,28 5,76 9,02

The data in the Table show that as the time of forecast 
grows the relative reduced error in the identification of the 
mean time to failure reverses sign and can reach fairly high 
values.

Now let us consider the dependability function and 
mean time to failure of an object with a periodic piecewise 
constant failure rate.

Let Т be the period of changes in the failure rate that con-
sists of l generally different time intervals (see Fig. 3, where 
l = 3), τi be the time period between the beginning of the n-th 
period and the end of the i-th interval of this period.

For convenience, it is assumed that τ0 = 0, τi=T, i= 0, 1, 
…, l. In this case λi is the failure rate, τi–τi–1 is the duration 
of the i-th interval in the n-th period. In the authors’ paper 
[13] under this change model of failure rate expressions for 

the dependability function p(t) and mean time  to failure 
were obtained:

 if 

 ,  (25)

where

;

 
.  (26)

Under the practically justified assumption λT<<1 after 
the Maclaurin expansion of the exponential curves under 
linear approximation we deduce:

 if 

 ;  (27)

, (28)

where  is the mean failure rate over 

the period Т.
After several transformations, formulas (25) and (27) can 

be brought to the following form:

 ;  (29)

Figure 3. Failure rate model
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, (30)

where  is the mean failure rate over the time equal to 
the (i-1)-th interval (unlike , the mean failure rate for the 
period Т).

The formulas for the dependability function 
 the summand  is not zero only if 

i > 1.
For the purpose of calculating the probability of no failure 

over the fixed time t=Tf using this formula, the value Tf is 
reported in terms of:

 ,  (31)

where 
Thus, for a particular case when Т is divided into two in-

tervals (in the first of which the failure rate λ1, in the second 

of which λ2) and , , the mean time to failure is 

defined by the formula:

.

If this expression is obtained from (28), it is assumed that 
, where .

The results of calculation of  under fixed λ2 
are given in Fig. 4. If α=1, a stationary failure flow takes 
place.

Let us proceed to the general case, when dependence λ(t) 
is defined by a piecewise constant non-periodical function. 
As it was mentioned above the failure rate model is suf-
ficiently universal.

As a non-periodical process can be considered as a pe-
riodical one with an infinitely long period, we obtain the 
dependability function for this case out of (29) under n = 1. 
Indeed, the value Т can be chosen to be quite large and equal 
to the time of forecast Тfrc, during which, as it was stated 
above, the value of the dependability function is of interest. 
The value p(t=Тfrc) is so small that the use of the object under 
t > Тfrc is of no practical interest. Under these conditions

  if .  (32)

It remains an open question under what  the 
practical usefulness of the calculations is lost. Let p(Тfrc)=pk 
be the probability of no-failure, under which the operation 
of a non-maintainable object end or a repairable object it is 
submitted to repairs. Then the duration of the predicted time 
period Тfrc subject to (28) is found using equation:

 . (33)

From which 

and 

  (34)

Therefore, within the time interval from the beginning 
of object operation to t=Тfrc the dependability function is 
defined by formula (33). If it is required to calculate the 
probability of no-failure over the fixed time Tf<Тfrc, the value 

Figure 4. Dependence  under different values of α
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Tf has the form t=τi–1+Δt , where 0≤Δt<Tfrc–τi–1 .
The linear approximation of p(t) if λmaxTf <<1, where 

 is as follows:

.

The mean time to failure in this case is defined by for-
mula

,

where  is the mean failure rate of the time Тfrc.
If linear approximation is not used, the expression of the 

mean time to failure  is calculated using formula (26), in 
which l is equal to the number of intervals of constant failure 
rate over time Тfrc.

Conclusion

1. Solutions are shown for the tasks of identifying the 
mean time to failure and dependability function for various 
non-stationary failure flows.

2. Models of “ageing” objects are described, of which 
the failure rate is defined by a temporally increasing func-
tion, models of objects with periodic piecewise constant 
failure rate, models of objects with non-periodic piecewise 
constant failure rate. The solutions of tasks for various non-
stationary failure flows come down to the last model after 
time discretization and piecewise constant approximation 
of the failure rate time dependence performed with the 
specified accuracy.

3. The shown solution results can be conveniently used 
in calculation of technical objects dependability.

References

1. Gnedenko BV, Beliaev YuK, Soloviev AD. Matem-
aticheskie metody v teorii nadiozhnosti [Mathematical 
methods in the dependability theory]. Moscow: Nauka; 
1965 [in Russian].

2. Shubinsky IB. Strukturnaya nadiozhnost informatsion-
nykh system. Metody analiza [Structural dependability of 
information systems. Analysis methods]. Ulianovsk: Oblast-
naya tipografia Pechatny dvor; 2012 [in Russian].

3. Zhao X, Al-Khalifa KN, Nakagawa T. Approximate 
methods for optimal replacement, maintenance, and inspec-
tion policies. Journal of Reliability Engineering & System 
Safety 2015;144: 68-73.

4. Ke H, Yao K. Block replacement policy with uncer-
tain lifetimes. Journal of Reliability Engineering & System 
Safety 2016;148:119-124.

5. Ermolin Yu A. Reliability estimation of urban waste-
water disposal networks. In: Hayworth GI, editor. Reliability 
Engineering Advances. New York (USA): Nova Science 
Publishers, Inc.; 2009.

6. Kancev D, Giorgiev B, Volkanovski A, Gepin M. Time-
dependent unavailability of equipment in an ageing NPP: 
sensitivity study of a developed mode. Journal of Reliability 
Engineering & System Safety 2016;149:107-120.

7. Chiachio J, Chiachio M, Sankararaman S, Saxena A, 
Goebel K. Condition-based prediction of time-dependent 
reliability in composites. Journal of Reliability Engineering 
& System Safety 2015;142:134-137.

8. Alekseev MI, Yermolin YuA. Nadiozhnost setei i 
soorouzheniy sistem vodootvedenia [Dependability of net-
works and structures of water disposal systems]. Moscow: 
Izdatelstvo ASV; 2015 [in Russian].

9. Yermolin YuA, Alekseev MI. Ouchiot “starenia” 
obiekta pri otsenke yego nadiozhnosti [Consideration of 
“aging” of an object in the evaluation of its dependability]. 
Vodosnabzhenie i sanitarnaya tekhika 2016;5:68-71 [in 
Russian].

10. Wang Z, Chen W. Time-variant reliability assess-
ment through equivalent stochastic process transforma-
tion. Journal of Reliability Engineering & System Safety 
2016;152:166-175.

11. Eryilmaz S. A reliability model for a three-state de-
graded system having random degradation rates. Journal of 
Reliability Engineering & System Safety 2016;156:59-63.

12. Baranov LA, Ermolin YA. Estimation of reliabil-
ity indices of a “linearly ageing” object. Dependability 
2015;4:61-64.

13. Baranov LA, Yermolin YuA. Nadiozhnost sistem s pe-
riodicheskoy kousochno-postoyannoy intesivnostiu otkazov 
[Dependability of systems with periodic piecewise constant 
failure rate]. Elektrotekhnika (in print) [in Russian].

About the authors

Leonid Avramovich Baranov, Doctor of Engineer-
ing, Professor, Head of Control and Information Security 
Department, Emperor Nicolas II Moscow State University 
of Railway Engineering (MIIT), Moscow, Russia, e-mail: 
baranov.miit@gmail.com

Yuri Alexandrovich Yermolin, Doctor of Engineering, 
Professor of Control and Information Security, Emperor 
Nicolas II Moscow State University of Railway Engineering 
(MIIT), Moscow, Russia, e-mail: ermolin.y@yandex.ru

Received on 21.07.2017


