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Abstract. Aim. The so-called pair-wise comparison method is one of the most popular de-
cision-making procedures owing to its efficiency, flexibility and simplicity. The primary disad-
vantage of this method in the context of expert evaluation of large numbers of alternatives or 
within a sufficiently wide field of knowledge is the impossibility to compare each element with 
each other, both due to the large number of such comparisons, random gaps and difficulties 
experienced by the expert while comparing some alternatives. The assessments are affected 
by gaps that complicate decision-making, as most statistical methods are not applicable to 
incomplete sets of data. The fairly popular algorithm for processing of pair-wise comparison 
matrices (the Saaty algorithm) cannot work with matrices that predominantly contain zero com-
ponents. The purpose of the paper is to develop a method of processing comparison matri-
ces in order to obtain weight coefficients (weights) of the considered alternatives that enable 
quantitative comparisons. Methods. In practice, there are several approaches to managing 
sets of data with gaps. The first, most easily implementable, approach involves the elimination 
of copies with gaps from the set with further handling of only complete data. This approach 
should be used in case gaps in data are isolated. Although even in this case there is a seri-
ous risk of “losing” important trends while deleting data. The second approach involves using 
special modifications of data processing methods that tolerate gaps in sets of data. And, finally, 
there are various methods of evaluation of missed element values. Those methods help to fill 
in the gaps in sets of data based on certain assumptions regarding the values of the missing 
data. The applicability and efficiency of individual approaches, in principle, depends on the 
number of gaps in data and reasons of their occurrence. In this paper, the pair-wise compari-
son matrix is considered in the form of a loaded graph, while the alternatives are the nodes 
and comparisons are the edges of the graph. Respectively, if a pair of alternatives occurs 
for which the expert could not specify a preference, the corresponding edge is absent. The 
paper considers a way of removing edges that correspond to the most controversial values, 
i.e. a cycle breakage algorithm that causes transformation of the initial graph to the spanning 
tree that allows for unambiguous comparison of any two alternatives. The algorithm of joint 
alignment of both the upper and lower boundaries of expert assessments is not considered 
in this paper. Results. The paper gives an example of practical application of the developed 
algorithm of processing incomplete matrices of pair-wise comparisons of ten objects obtained 
in a certain expert assessment. It also shows the efficiency of the suggested approach to 
priority recovery of compared alternatives, explores ways of automating computing and future 
lines of research. Conclusions. The proposed method can be used in a wide range of tasks 
of analysis and quantitative evaluation of risks, safety management of complex systems and 
objects, as well as tasks related to the verification of compliance with the requirements for 
such highly dependable elements as nuclear reactors, aviation and rocket technology, gas 
equipment components, etc., i.e. in cases when low (less than 0,01) probabilities of failure 
per given operation time are to be evaluated, while the failure statistics for such elements in 
operation is practically nonexistent. The proposed algorithm can be applied in expert assess-
ment in order to identify the type and parameters of time to failure distribution of such highly 
dependable elements, which in turn will allow evaluating dependability characteristics with the 
required accuracy.
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Introduction

The decision-making procedures that involve experts in 
choosing the optimal variant(s) out of the allowed set are 
often used in a variety of areas for assessment, selection, 
definition of task priority, etc. Obviously, the comparison 
of various alternatives based on their preferability in terms 
of decision-making tasks in many cases is unfeasible using 
one criterion or one expert. Consequently, in most decision-
making tasks there are procedures that allow combining 
the opinions of several experts regarding the alternatives 
presented to them [1, 2]. In most cases those procedures use 
the so-called pair-wise comparison method that assumes that 
an expert may prefer one alternative to another one while 
comparing them.

As each expert has a unique experience of solving specific 
problems, the opinions of various experts may significantly 
differ (indeed, there are many factors that affect an expert’s 
preferences). This variety of expert assessments may cause 
a situation where some of them are unable to adequately 
express any degrees of preference by comparing two or 
more available alternatives. That may be caused by insuf-
ficient competence of the expert in an area of knowledge 
that pertains to the task or due to the fact that the expert is 
incapable of identifying the degree of preference of some 
of the presented variants over the others. In such situations 
such expert has to ensure fuzzy preference relation [3] or 
abandon the assessment of the presented pair of alterna-
tives. A non-trivial task arises whereas missed data must 
be recovered in order to obtain acceptable results of expert 
assessment.

In practice, there are several approaches to managing 
sets of data with gaps. The first, most easily implementable, 
approach involves the elimination of copies with gaps from 
the set with further handling of only complete data [4]. This 
approach should be used in case gaps in data are isolated. 
Although even in this case there is a serious risk of “losing” 
important trends while deleting data. In the same case, when 
the number of gaps is too high, the removal of the respective 
copies may cause a data deficiency or even impossibility 
of further processing. The second approach involves using 
special modifications of data processing methods that allow 
gaps in sets of data. In [5], the authors describe a number 
of modifications of classification and clustering methods 
for managing data that contain missed values. And, finally, 
the third, most common, approach is the use of methods of 
evaluation of missed element values. Those methods help to 
fill in the gaps in sets of data based on certain assumptions re-
garding the values of the missing data. The applicability and 
efficiency of individual approaches, in principle, depends on 
the number of gaps in data and reasons of their occurrence. 
In terms of the nature of data origins, the categories of gaps 
that are usually identified are set forth in [6]. 

Quite frequently, empirical research has to reject the 
results of expert polls if some data is missing [7]. 

In [8], the effects of the above sets of pair-wise com-
parisons are researched. The paper compared the results 

for complete pair-wise comparison matrices and incomplete 
ones that were obtained by removing known elements from 
complete ones. The findings of [8] have shown that “random 
removal of up to 50 percent of comparisons provides good 
results with no loss of accuracy”. Nevertheless, as this proc-
ess is based on a priori knowledge of the complete pair-wise 
comparison matrix it is not applicable in practice. Thus, [8] 
suggests – for the cases of incomplete pair-wise compari-
son matrices – using methods that allow “completing” the 
matrix. A strong argument in support of this approach is set 
forth in [9]: “as a rule, a scenario with missed values disrupts 
the rating more significantly than the same scenario with a 
value”. A system that helps build fuzzy preference relations 
in a solution was suggested in [10]. In the decision-making 
group, procedures that correct the absence of knowledge in 
a specific expert using information provided by the other 
experts, along with some aggregation procedures can be 
found in [11] and [12]. Those approaches have a number 
of disadvantages some of which are noted by the authors 
of [13]. 

In Russian literature, there are also works related to the 
potential solutions of the above problems, e.g. [14], how-
ever the approaches used in them do not provide a clear 
solution. 

1. Problem definition

In the classic Saaty setting [15] there is a certain set of 
objects O1, O2, …, ON (possible actions, parameters, alter-
native solutions, etc.) with a certain hierarchy. An expert’s 
quantitative judgement regarding a pair of objects (Oi, Oj) 
is represented with a matrix of size n×n: A=(aij), (i, j=1, 2, 
…, n), where the numbers aij, of which the matrix consists 
correspond with the object’s significance Oj compared to 
Oi and are non-negative. In order to identify the quantita-
tive indicators of the relative significance of the compared 
objects the method suggests a scale of relative comparisons 
expressed in whole numbers from 1 to 9. Objects with equal 
significance are rated “1”. The ratings along the main di-
agonal of the matrix are also “1” (objects are compared to 
themselves), i.e. aii=1. The Saaty matrix is antisymmetrical 
about the main diagonal, i.e. aij=1/aji. 

Further, in [15], after the quantitative judgements 
regarding the pairs (Oi, Oj) have been formed in numeric 
expressions in terms of aij the task comes down to as-
sociating each of the compared objects numeric weights 
that would best match the stated expert judgements. In 
order to find the priority vector it is required to find the 
vector ω that fulfils the condition Aω=λmaxω. According 
to the theorem on the existence and uniqueness, while 
solving the eigenvalue problem for the non-negative 
matrix as per [15, 16] the resultant eigenvector is found, 
which after normalization becomes the priority vector of 
the compared objects. 

We are seeking the solution for the case when in the 
matrix A some assessments are not defined, i.e. ∃aij:aji=NA 
(NA stands for Not Available).
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2. Method description

The incomplete pair-wise comparison matrix  is easily 
transformed into the skew-symmetric matrix  by taking 
logarithms of the elements of the matrix of coefficients.

The weights Wi are transformed into Vi=ln(Wi), the pair-
wise comparison coefficients matrix , while the 

residuals matrix  is transformed into the 

functionals matrix  and becomes skew-
symmetric.

   (1)

Having identified the values Vi, we perform a backward 
transformation: 

  (2) 

in order to fulfil the Saaty weight normalization require-
ment, i.e. 

The matrix may be diagonalized in order to make it 
positive above the main diagonal. However, it should be 
noted that such diagonalization is not always possible even 
in case of a single expert and admittedly unnecessary as 
only the matrix graph connectivity matters. For a group of 
experts diagonalization is necessary, as depending on the 
vertex degree the upper and lower assessments swap places. 
It is assumed that for a group of experts total agreement is 
unachievable, while their preference coefficient  is within 
a certain range: 

  (3)

The lower bound Bij (Bottom) corresponds to the minimal 
value, while the upper bound Tij (Top) corresponds to the 
maximum value. In this paper we examine the implemen-
tation of the algorithm for the upper estimates Ti,j or one 
expert .

Due to the particular properties of the matrix Tij the 
initial values of weights can be random constant values 
in order not to be confused by the weight increment 
signs. The value of change depends on the type of line/
column. The type equals to “-1” when in the j-th line of 
the matrix ( ) above the main 
diagonal there are only indeterminate values (NA). The 
type equals to “1” when in the i-th column of the matrix 
(  ) above the main diagonal 
there are only indeterminate values (NA). In those cases 
when actual data are present both in the j-th line and in the 

i-th column it is obvious that the type of the first object al-
ways equals to “1”, while the type of the last object equals 
to “-1”.

Initially the matrix  equals to the matrix . The ar-
bitrary choice of the weights is due to the fact that the result 
does not depend on the choice of the initial approximation 

 (4)

The first important stage is finding the hardest contradic-
tion. We seek the optimal weight displacement for all lines 
through the optimization of the weight Vi that involves 
both the j-th line and the i-th column. We chose lines in 
the descending order (i=N,…,1) until all displacements 
become zero1. 

Then, we take 

  (5)

Weight change happens step by step in accordance with

  (6)

After the next step ΔVi becomes zero.
The value ΔVi is chosen using the algorithm based on the 

modulus optimization in the matrix , but only as regards 
the i-th step (i-th line).

We minimize the maximum moduli of the following 
values

 (7)

for all i=1,…,N, where N is the dimension of the problem; 
 is the maximum value above the diagonal in the i-th 

line;  is the minimum value above the diagonal in the i-th 
line;  is the maximum value above the diagonal in the 
i-th column;  is the minimum value above the diagonal 
in the i-th column.

The modified weight is calculated using the following 
formulas:

  (8)

The respective solutions for any line are identified using 
the formulas given in Table 1.

The next step is the removal of cells. If it is allowable 
according to the connectivity criterion2, we remove the first 
edge belonging to the right-hand side of the «floater» against 
which in the line there is an edge from the «left-hand» side 
of the «floater», when the edge (i,j) is the only edge that 
connects non-overlapping node (object) subset. 

Upon removal of the edge the solution restarts from the 
initial conditions.

It should be noted that it is important to track possible 
changes in the type of the “line/column”. Usually the change 

1 For instance, for a matrix with the dimension of 10 the 
number of required iterations is around 15.

2 The connectivity criterion is important in cases when 
the spanning graph may be discontinued.
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is from “0” to “1”, i.e. when the last significant element in 
the respective column disappears. 

The next stage is the procedure that consists of two 
embedded cycles. The external involves finding the next 
“boundary cycle” in the remaining matrix. The internal 
cycle involves finding the edges of which the “boundary 
cycle” consists.

The end of the external cycle is the condition:

  (9)

The resulting solution will be the solution of the problem 
for the single expert case. For the group of exerts case, this 
solution is for reference only ( ).

It is required to take into consideration the remoteness of 
the lower bounds defined by the matrix .

For that purpose, let us recover the initial configuration 
of the graph. 

Let us calculate the resulting matrix :

   (10)

and remove all negative elements.
Some edges can complement the reference configura-

tion. 
Then, let us perform the following procedure that also 

has two cycles.
In the external cycle we define the most critical edge 

that can be dropped. For that purpose, the scale of single 
displacement for each weight Ui is calculated, the size of 
single displacement step for each edge (i,j) Dij and the size 
of the step h using the formula 

 
 (11)

In this paper we omit the formulas for Dij and Ui.
Next, in the internal cycle we identify the virtual optimal 

solution using the formulas:

   (12)

  (13)

If the emerged zero elements  do not cause the graph 
to lose connectivity, the edge of the first one can be omitted. 
If, on the contrary, the output matrix loses connectivity, the 

Table 1

Type Condition Calculation formula

0

There are elements in the line and elements in the adjacent column

if , then

if , then

if , then

if , then

otherwise 

1 All components of the column are equal to NA 

-1 All components of the line are equal to NA 

Table 2. Initial coefficient values

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

O1 1 1
3

1
5

1
3

1
7

1
3 NA NA NA 1

4

O2 3
1 1 1

5 NA 1
5

1
4 NA NA NA 1

3

O3 5
1

5
1 1 3

1 NA 3
1

3
1

5
1

5
1

3
1

O4 3
1 NA 1

3 1 1
3 NA NA NA NA 1

3

O5 7
1

5
1 NA 3

1 1 3
1

5
1

5
1

5
1

3
1

O6 3
1

4
1

1
3 NA 1

3 1 NA NA NA 1
4

O7 NA NA 1
3 NA 1

5 NA 1 NA NA 1
5

O8 NA NA 1
5 NA 1

5 NA NA 1 NA 1
5

O9 NA NA 1
5 NA 1

5 NA NA NA 1 1
5

O10 4
1

3
1

1
3

3
1

1
3

4
1

5
1

5
1

5
1 1
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last successful attempt is “memorized” as a real optimal 
value for the weights .

If the matrix  matches the connectivity matrix of the 
matrix , the single displacement Ui=1 (type i=1); Ui=0 
(type i=–1).

After node run in  the optimal solution takes its final 
form. It connects to the lower bound and is the optimal solu-
tion deduced using the higher bound data. It is assumed that 
the conflict of interests is at the higher bound where each 
expert wants to define his/her own priorities.

3. Example of practical application 
of the method

Let us assume there is a pair-wise comparison matrix 
filled by experts using the Saaty method. 

The matrix is not complete (missing assessments are 
marked NA), because the experts could not express their 
preferences while comparing some pairs of objects (e.g. O1 
and O7, O2 and O4, etc.).

Let us transform the incomplete pair-wise comparison 
matrix into a skew-symmetric matrix by taking logarithms 
of the elements of the matrix of coefficients.

The matrix after diagonalization that we perform so that 
the matrix is positive above the main diagonal is shown in 
Table 4. 

Let us examine the implementation of the algorithm1 for 
upper estimates Ti,j or single expert .

Due to the particular properties of the matrix Tij the ini-
tial values of weights (column B, Table 5) can be random 
constant value in order not to be confused by the weight 
increment signs. The value of change (column C, Table 5), 
as we said above, depends on the type of line/column. 

In order to find the hardest contradiction we seek the 
optimal weight displacement for all lines through the op-
timization of the weight Vi that involves both the j-th line 
and the i-th column. We select lines in the descending order 
(i=N,…,1) until all displacements in column C (Table 5) 
become zero. 

Using the above algorithm, we find the boundary 
modulo cycle for the initial conditions. The result is given 
in table 6.

Which cell must be removed? On the right-hand side of 
the «floater» that are (2,3), (3,4), (4,5), (5,7), on the left-hand 
side that is only the edge (2,7). The edges on the right-hand 
side indicate that the 2-nd object is better that the 3-rd one, 
the 3-rd object is better than the 4-th one, the 4-th one is 
better that the 5-th one, the 5-th one is better than the 7-the 
one e0,8029=2,3632 times. 

1 As the matrix is skew-symmetric let us omit the part 
below the main diagonal.

Table 3. Logarithms of coefficient values

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10
O1 0 -1,09861 -1,60944 -1,09861 -1,94591 -1,09861 NA NA NA -1,38629
O2 1,098612 0 -1,60944 NA -1,60944 -1,38629 NA NA NA -1,09861
O3 1,609438 1,609438 0 1,098612 NA 1,098612 1,098612 1,609438 1,609438 1,098612
O4 1,098612 NA -1,09861 0 -1,09861 NA NA NA NA -1,09861
O5 1,94591 1,609438 NA 1,098612 0 1,098612 1,609438 1,609438 1,609438 1,098612
O6 1,098612 1,386294 -1,09861 NA -1,09861 0 NA NA NA -1,38629
O7 NA NA -1,09861 NA -1,60944 NA 0 NA NA -1,60944
O8 NA NA -1,60944 NA -1,60944 NA NA 0 NA -1,60944
O9 NA NA -1,60944 NA -1,60944 NA NA NA 0 10,65705
O10 1,386294 1,098612 -1,09861 1,098612 -1,09861 1,386294 1,609438 1,609438 1,609438 0

Table 4. Reordering of objects

O5 O3 O10 O6 O2 O4 O1 O7 O8 O9
O5 0 NA 1,0986 1,0986 1,7041 1,0986 1,9459 1,7041 1,7041 1,7041
O3 NA 0 1,0986 1,0986 1,7041 1,0986 1,7041 1,0986 1,7041 1,7041
O10 -1,0986 -1,0986 0 1,3863 1,0986 1,0986 1,3863 1,7041 1,7041 1,7041
O6 -1,0986 -1,0986 -1,3863 0 1,3863 NA 1,0986 NA NA NA
O2 -1,7041 -1,7041 -1,0986 -1,3863 0 NA 1,0986 NA NA NA
O4 -1,0986 -1,0986 -1,0986 NA NA 0 1,0986 NA NA NA
O1 -1,9459 -1,7041 -1,3863 -1,0986 -1,0986 -1,0986 0 NA NA NA
O7 -1,7041 -1,0986 -1,7041 NA NA NA NA 0 NA NA
O8 -1,7041 -1,7041 -1,7041 NA NA NA NA NA 0 NA
O9 -1,7041 -1,7041 -1,7041 NA NA NA NA NA NA 0
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As the result, the 2-nd object is better that the 7-th object 
(2,3632)4 =31,1890 times. But cell (2,7) shows the opposite, 
i.e. the 2-nd object is worse than the 7-th one 2.3632 times. 
Thus, a contradiction arises. On the one hand the 2-nd object 
is 31.1890 times better that the 7-th one, on the other hand 
its is worse 2.3632 times. But most importantly the cycle 
can not be improved. Attempting to modify the weights of 
objects in the cycle automatically increases the modulus.

Therefore, the edge (2,3) must be removed. That is 
because from 0.8029 to 0.1016 (edge (2,4) the reduction 
is the greatest. 

Following the algorithm we implement the embedded 
cycles (external and internal). The resulting solution (col-
umn B, Table 7) is the solution of the problem for the single 
expert case. 

In order to account for the remoteness of the lower bounds 
defined by the matrix  let us recover the initial configura-
tion of the graph (Table 8). 

Next, let us calculate using (10) the resultant matrix Rij 
and remove all negative elements (Table 9).

Some edges, e.g. (1,8) can complement the reference 
configuration. Next, in the external cycle we define the most 

Table 5. Input data

A B C D E F G H I J K L M N
i Vj Vj Тип 1 2 3 4 5 6 7 8 9 10
1 10,00000 1,70280 1 0 NA 1,2528 1,3863 1,7918 1,2528 2,1528 1,7118 1,7918 1,6247
2 10,00000 1,48430 1 0 1,3863 1,3863 1,7047 1,0968 1,8718 1,2528 1,7047 1,8718
3 10,00000 0,24275 0 0 1,5041 1,2528 1,3863 1,5041 1,7918 1,8718 1,7047
4 10,00000 0,05265 0 0 1,6094 NA 1,2528 NA NA NA
5 10,00000 -0,20275 0 0 NA 1,3863 NA NA NA
6 10,00000 -0,06675 0 0 1,2528 NA NA NA
7 10,00000 -1,70280 -1 0 NA NA NA
8 10,00000 -1,52230 -1 0 NA NA
9 10,00000 -1,78825 -1 0 NA

10 10,00000 -1,74825 -1 0

Table 6

A B C D E F G H I J K L M N
i Vj Vj Тип 1 2 3 4 5 6 7 8 9 10
1 10,81469 0,00 1 0 0 0,5956 0,0279 -0,373 -0,354 -0,5956 -0,176 -0,3619 -0,3686
2 10,74094 0,00 1 0 0,8029 0,1016 -0,387 -0,436 -0,8029 -0,5612 -0,3753 -0,0477
3 10,15750 0,00 0 0 0,8029 -0,255 0,4365 -0,5871 0,5612 0,3753 0,3686
4 9,45626 0,00 0 0 0,8029 0 -0,1372 0 0 0
5 8,64972 0,00 0 0 0 0,8029 0 0 0
6 9,20767 0,00 0 0 0,1114 0 0 0
7 8,06628 0,00 -1 0 0 0 0
8 8,92692 0,00 -1 0 0 0
9 8,66097 0,00 -1 0 0
10 8,82140 0,00 -1 0

Table 7 

A B C D E F G H I J K L M N O

Vi ΔVj Wi
Тип 
Vi

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

v1 2,688766 0,00000 0,162651 1 0 0 0 0 0 0 0 0 –1e–16 –2e–16

v2 2,229765 0,00000 0,102782 1 0 0 0 0 0 0 –1e–16 0 0
v3 2,768765 0,00000 0,176197 1 0 0 0 0 –2e–16 –1e–16 1e–6 1e–6

v4 2,517465 0,00000 0,137044 1 0 0 0 –2e–16 0 0 0
v5 2,650965 0,00000 0,156618 1 0 0 2e–16 0 0 0
v6 2,517465 0,00000 0,137044 1 0 –2e–16 0 0 0
v7 1,264665 0,00000 0,039154 -1 0 0 0 0
v8 0,976965 0,00000 0,029365 -1 0 0 0
v9 0,896966 0,00000 0,027107 -1 0 0
v10 1,064066 0,00000 0,032038 -1 0
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critical edge that can be dropped. For that purpose, the scale 
of single displacement for each weight Ui is calculated, the 
size of single displacement step for each edge (i, j) Dij and 
the size of the step using the formula (11), in the internal 
cycle we define the virtual optimal solution using the for-
mulas (12) and (13).

In the considered example the matrix  matches the 
connectivity matrix of the matrix , the single displace-

ment Ui=1 (type i=1); Ui=0 (type i=–1).
After (1,10) and (1,9) nodes run in  the optimal solu-

tion takes its final form (Table 10). 
The solution connects with the edge (1,8) to the lower 

bound and is the optimal solution deduced using the higher 
bound data. It is assumed that the conflict of interests is at 
the higher bound where each expert wants to define his/her 
own priorities.

Table 10

Vi Wi w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

w1 2,48106 0,1611740 0 0 0 0 0 0 0 1e-6 0 0
w2 2,02867 0,1025226 0 0 0 0 0 0 0,1354 0 0
w3 2,56767 0,1757537 0 0 0 0 0,2062 0,2044 0,1666 0,2508
w4 2,31637 0,1366993 0 0 0 0,3585 0 0 0
w5 2,44987 0,1562230 0 0 0,2689 0 0 0
w6 2,11637 0,1119200 0 0,1585 0 0 0
w7 1,26467 0,0477550 0 0 0 0
w8 0,97697 0,0358156 0 0 0
w9 0,89697 0,0330620 0 0
w10 1,06407 0,0390751 0

Table 8

wcp w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

w1 2,688766 0 0 -0,773 -0,745 -1,3485 -0,745 -0,3677 0,2077 0,1824 0,1206
w2 2,229765 0 -1,232 -0,981 -1,8075 -1,204 -0,539 0,3365 -0,1713 -0,2206
w3 2,768765 0 -1,002 -0,5754 -0,665 0,4073 0,4055 0,3677 0,4519
w4 2,517465 0 -1,3863 0 0,5596 0 0 0
w5 2,650965 0 0 0,47 0 0 0
w6 2,517465 0 0,5596 0 0 0
w7 1,264665 0 0 0 0
w8 0,976965 0 0 0
w9 0,896966 0 0
w10 1,064066 0

Table 9

wср w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

w1 2,688766 0 0 0 0 0 0 0 0,2077 0,1824 0,1206
w2 2,229765 0 0 0 0 0 0 0,3365 0 0
w3 2,768765 0 0 0 0 0,4073 0,4055 0,3677 0,4519
w4 2,517465 0 0 0 0,5596 0 0 0
w5 2,650965 0 0 0,47 0 0 0
w6 2,517465 0 0,5596 0 0 0
w7 1,264665 0 0 0 0
w8 0,976965 0 0 0
w9 0,896966 0 0
w10 1,064066 0
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