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Abstract. This paper is a follow-up to [1]. It examines the matters of planning of the scope of 
highly dependable objects testing. The process of new technology development and manufac-
ture involves determining its dependability indicators. The most objective method of identifying 
dependability characteristics of products is field testing. One of the widely used testing plans 
is the [N,U,T] plan. This plan that involves testing N nonreparable samples within the time 
interval between 0 and a certain T. It is assumed that during the tests k objects fail, while N-k 
objects successfully pass the tests. Thus, at the outcome of the experiment we have a mixed 
sample that includes k times to failure and N-k right censored observation. If the tested ob-
ject is highly dependable it is quite possible that within the time period [0,T] failures will not 
happen, i.e. k will be equal to 0, therefore the probability of failure within this time period is 
extremely low and the number of tested objects is limited. Nevertheless even in this situation 
it would be desirable to be able to be in control of the accuracy of the estimation obtained 
during such experiments. It is clear that the accuracy of such estimation will depend not only 
on the number of tested objects N, but also on the experiment duration. For a fixed N, as the 
observation time T grows the estimation accuracy increases due to the increasing proportion 
of complete times, while the proportion of censored ones goes down. It should be noted that 
when we talk about identifying the dependability characteristics of complex and costly objects 
we cannot test large batches of finished products. Therefore the problem consists in defining 
testing duration and size of the product batch to be tested subject to specified requirements for 
the accuracy of estimation of dependability characteristics obtained as the result of the tests. 
The scope planning is based on the manufacturer’s requirement to validate the lower bound 
of the probability of no failure P0 with a specified confidence level at a certain time point t0. 
The aim of the paper is to identify the test scope of a batch of finished products N(T) under 
the condition of fulfilment of the manufacturer’s requirement for compliance with the lower 
confidence bound of the probability of no failure with a specified confidence level 1 – α. Three 
failure distributions are under examination: exponential distribution law, Weibull distribution and 
distribution with linear rate function. The considered types of distribution law enable the re-
search of objects with decreasing, constant and increasing failure rate function.  Methods. 
In this paper the authors deduce formulas for calculation of the scope of experiment for a 
number of experiment durations. The estimates are obtained using the maximum likelihood 
method and methods of researching asymptotic properties of estimates through the Fisher 
information quantity. Conclusions. The findings allow for a substantiated approach to planning 
the scope of highly dependable objects testing. It is shown that the longer is the experiment 
duration the fewer products must be supplied for testing. The dependence is non-linear, close 
to hyperbolic and is conditioned by both the input parameters and the parametrization of the 
failure rate function. 
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Introduction

The process of new technology development and manu-
facture involves determining its dependability indicators. 
The most objective method of identifying dependability 
characteristics of products is field testing. This paper ex-
amines the [N,U,T] test plan. This plan that involves testing 
N nonreparable samples within the time interval between 0 
and a certain T. It is assumed that during the tests k objects 
fail, while N-k objects successfully pass the tests. Thus, at 
the outcome of the experiment we have a mixed sample that 
includes k times to failure and N-k right censored observa-
tion. It is clear that the accuracy of the obtained estimate 
will depend not only on the number of tested objects N, 
but also on the experiment duration. For a fixed N, as the 
observation time T grows the estimate accuracy increases 
due to the increasing proportion of complete times, while 
the proportion of censored ones goes down. It should be 
noted that when we talk about identifying the dependability 
characteristics of complex and costly objects we cannot test 
large batches of finished products. Therefore the problem 
consists in defining testing duration and size of the product 
batch to be tested subject to specified requirements for the 
accuracy of estimation of dependability characteristics ob-
tained as the result of the tests. 

Problem definition

The experiment is conducted according to the plan
 [N,U,T]. This plan involves testing N samples within a given 

time interval between 0 and T with no replacement of failed 
products [2–4]. During the test k failures are observed. Let 
us designate the obtained operation times as t1, t2, …, tk. ν 
products successfully pass the tests ν = N–k (ν is the number 
of nonfailed samples with the operation time Т). The non-
failed objects make up the sample of right censored operation 
times. Figure 1 shows the plan of the experiment.

Thus, sample no. 1 worked without failure up to the 
moment in time T. The second sample failed at the mo-
ment t2, etc.

Let us assume that at a certain moment t0 the lower confi-
dence bound with a specified confidence level 1–α0 for PNF 
P(t0) must not be lower than P0, i.e.

 Pr(P(t0) ≥ P0) ≥ 1–α0. (1)

It is obvious that it can be achieved by selecting the test 
scope N(t0) only in the case when the actual PNF in this 
point P(t0) is to the right of P0. Otherwise the problem is 
unsolvable. 

It would be logical to assume that at a certain moment in 
time T (T≥t0) in order to ensure an equal accuracy of PNF 
estimation in point t0 the required scope of finished products 
tests N(T) is at least equal to that defined for point t0. That 
is primarily due to the fact that the PNF is a non-increasing 
function. Let us designate the required test scopes as N(t0) 
and N(T).

The aim of the paper is to identify the test scope of a batch 
of finished products N(T) under the condition of fulfilment 
of the manufacturer’s requirement for compliance with the 
lower confidence bound of the probability of no failure with 
a specified confidence level 1 – α. During the test we will 
identify the correlations between the test scopes of N(T) 
and N(t0) provided that the requirements for the accuracy 
of the results for different test durations are equal. During 
the tests we will consider various parametrizations of the 
failure rate function λ(t). 

In the process of solving the problem we will be assum-
ing that the failure rate function is defined by one of the 
formulas [1, 2]:

 λ(t)=λ; (2)

 λ(t)=λ1+λ2t; (3)

 λ(t)=λ1t
λ2. (4)

The formula (2) (the rate is constant) is typical to ex-
ponential distribution of time to failure, the formula (3) is 
typical to the distribution function with linear failure rate, 
while the function (4) is typical to the Weibull distribu-
tion law.

Figure 1. Plan of the experiment
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In order to simplify the calculations, as in [1], let us 
transform the considered model as follows: 

 λ(t)=λg(t) (5)
where g(t)=1 corresponds with the exponential distribu-

tion,
g(t)=a+bt corresponds with the distribution  

with a linear failure rate function,      (6)
g(t)=ta corresponds with the Weibull distribution.    (7)
The function g(t) must meet two main conditions:

g(t)≥0,
while the integral function

 if t→∞.

We will assume that the coefficients a, b in (6), (7) are 
known, while the parameter λ is unknown and estimated 
by sample.

In the next section we will identify how the accuracy of 
this parameter’s estimation depends on the duration T of the 
experiment and subsequently deduce the condition of its 
preservation under the chosen experiment plan.

Evaluation of parameter λ and 
identification of its accuracy

It is known [2] that the accuracy of an estimate obtained 
using the maximum likelihood method (MLM estimates) 
depends on the Fisher information quantity. 

In the beginning, let us find the quantity of Fisher in-
formation contained in the initial statistics. The likelihood 
function that corresponds with the chosen plan of experiment 
[N,U,T] will be as follows:

where  is the distribution 
density of time to failure.

Log-likelihood function:

.

We identify the partial derivative.

 
. (8)

Here  is a binomially distributed random 

value (r.v.): 

 . (9)

The information quantity (dispersion of the right part of 
the equation (8) will be defined by the sum of three sum-
mands. Let us find each individually.

.

.

By adding the dispersions to covariations we identify the 
Fisher quantity:

, (10)

where Ft(T) is the distribution function of time to failure.
Now, let us deduce the MLM estimate for λ:

 

.  (11)

The estimate is acquired by equalling the right side of the 
equation (8) to zero. It is known that the MLM estimate is 
asymptotically unbiased, consistent, asymptotically efficient 
and asymptotically normal. Thus,

 
. (12)

In the next section we will research the Fisher informa-
tion quantity.

Research of estimate 

Let us introduce the designation of the numerator of 
Fisher information quantity (10):

 K(T)=NFt(T).  (13)
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Obviously K(T) will also depend on the parameter λ, 
because it affects the distribution function Ft(T), yet we are 
primarily interested in the dependence of the introduced 
indicator on time. In terms of significance, K(T) will be the 
expectation of r.v. k that is equal to the average number of 
failures by the moment of time T distributed according to 
the law (9). 

Due to the well-known asymptotic property of the dis-
tribution function 

 .  (14)

Obviously sooner or later all N samples will fail. In this 
case the estimate (11) will tend to the estimate based on the 
complete sample:

 

. (15)

If the test scope N is a time-independent constant, then 
the function K(T) and function Ft(T) will be non-decreasing, 
while K(0)=0.

Let is consider the condition that will ensure the achieve-
ment of the required lower bound of the PNF in point t0. Un-
der the chosen PNF estimation method its lower confidence 
bound will be P0. This value is identified by calculating the 
upper bound of the parameter λ: , where  is the 
upper bound of the parameter λ calculated as if the testing 
of samples ended at the moment t0. This indicator will be 
identified through the solution of the equation

 
, (16)

where Ф(x) is the standard normal law distribution func-
tion Norm(0,1). By solving the equation (16) we obtain:

.

If the test lasts to the moment in time T, the upper bound 
of the parameter will be identified through the solution of 
an equation similar to (16), where t0 is replaced with T. The 
following formula is obtained:

 
,  (17)

where  is the quantile of the normal law Norm(0,1) 
of the level 1–α0.

Estimate (17) will be used in the calculation of the lower 
bound of the PNF in point t0. According to the stated aim 
of the research it is required to ensure the fulfilment of the 
condition according to which the lower bound of the PNF 
calculated with the confidence level 1–α0 was not lower than 
P0 regardless of the duration of experimental observations. 

As the failure rate is one-to-one expressible through PNF, a 
similar condition can be formulated for the rate. Therefore, 
for the random positive moment of time T the following 
can be written: 

 . (18) 
Thus, it is required to choose the size of the batch of 

products to be tested in such a way as to ensure the upper 
bound of failure rate  did not depend of the observation 
time. In other words, the accuracy of estimation of the pa-
rameter λ at the moment of time t0 must be equal to that at 
the moment T. That can be achieved if the Fisher information 
quantity is assumed to be constant. This condition will be 
written as K(T)=const. 

Condition of preservation of accuracy 
of estimate λ

The error is estimated at the moments t0 and T will be 
identical if the information quantities in those points are 
equal. We will achieve the equality of the information quanti-
ties by selecting the required test scope N(T) and N(t0). 

The condition of equality of information quantities for 
two random moments in time t0 and T will be as follows:

 .  (19)
This condition (19) will ensure an estimation accuracy of 

the unknown parameter λ based on the findings of experi-
ment (N(T),U,T) as if we estimated λ based on the findings 
of experiment (N(t0),U,t0).

Out of (10), (14) and (19) follow the properties: 

 or 

 (20)

Thus, for any T the constant K(T) will be equal to both 
the expected number of failures at the moment t0 and the 
number of samples N(∞). In the following section let us 
identify the constant N(∞).

Solution of the problem

Formula (15) defines the estimation of parameter λ if 
T→∞. Let us define the asymptotic number of samples 
N(∞) based on the accurate distribution of estimate . It is 
known [8] that r.v. 2λG(ti) will have the ch-square distribu-
tion with two degrees of freedom: . Due to the 
independence of summands:

 
. (21)

Proposition (21) allows constructing a right-hand confi-
dence interval for parameter λ.

.
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Out of which we obtain a transcendent equation to 
find N(∞):

 
, (22)

where  is the quantile of ch-square distribution 
with 2N degrees of freedom of level α0.

Table 1 shows an example of calculation of asymptotic 
values of N(∞) for various q0.

We can use the asymptotic distribution of estimate (12) 
and by solving the equation (16) under N obtain the fol-
lowing results:

 
. (23)

The analysis of (23) has shown that approximate cal-
culation is very optimistic (see Figure 2) and the estimate 
of the required test scope turns out to be significantly 
conservative.

If the PNF P0 in point t0 is unknown, we can, as in [1], 
assume that: 

 
. (24)

In fact, due to the significant asymmetry of the binomial 
distribution in case of highly dependable equipment the fol-

lowing inequation will be fulfilled: . Therefore, 

 and the asymptotic value estimate N(∞) 

will be exaggerated, i.e. the estimate will be pessimistic.

Table 1. Asymptotic values for the number of test (α0=0.05)

q0 0,051 0,178 0,273 0,342 0,394 0,436 0,469 0,498 0,522 0,543
N(∞) 1 2 3 4 5 6 7 8 9 10

Table 2. Values of N(∞) depending on α and P0.

P0
α 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,95 0,99 0,999

0,01 5,08 6,54 7,81 8,98 10,09 11,16 12,19 13,19 14,16 14,64 15,02 15,11
0,02 4,10 5,25 6,26 7,18 8,06 8,90 9,71 10,50 11,27 11,65 11,95 12,01
0,03 3,53 4,52 5,37 6,16 6,90 7,61 8,30 8,97 9,62 9,94 10,19 10,25
0,04 3,14 4,01 4,75 5,44 6,09 6,72 7,32 7,90 8,47 8,75 8,97 9,02
0,05 2,84 3,62 4,28 4,90 5,48 6,04 6,57 7,09 7,60 7,85 8,04 8,09
0,06 2,60 3,30 3,91 4,46 4,99 5,49 5,97 6,44 6,90 7,12 7,30 7,34
0,07 2,40 3,04 3,59 4,10 4,58 5,03 5,47 5,90 6,31 6,52 6,68 6,72
0,08 2,23 2,82 3,32 3,79 4,23 4,64 5,05 5,44 5,82 6,00 6,15 6,18
0,09 2,08 2,62 3,09 3,52 3,92 4,31 4,68 5,04 5,39 5,56 5,69 5,72
0,1 1,95 2,45 2,89 3,28 3,65 4,01 4,35 4,69 5,01 5,17 5,29 5,32

Figure 2. Exact and approximate values of N(∞)
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Table 2 shows calculated values of N(∞) depending on 
the significance of α and lower bound of PNF P0.

In order to evaluate the test scope in random point t it 
remains to apply (20). 

Out of (20) follows . As the true value of 

the parameter λ is unknown it can be evaluated based on the 

condition . From which 

 

. (25)

The time dependance in case of low λG(T) is almost 
hyperbolic under G(T). 

 
. (26)

Fig. 3 shows the behavior of the required test scope (25) 
depending on T on the time scale T/t0. The input parameters 
are as follows: P0=0.95; α0=0.05, t0=5, N(∞)=7.85 (see Ta-
ble 2). During the calculations the distribution parameters 
were chosen as follows: for the Weibull distribution the 
parameter a=1.1. For the model with linearly increasing 
rate function a=1; b=0.1.

It can be seen that models with an increasing rate func-
tion compared to those with a constant failure rate require 
a relatively smaller number of tests. 

Conclusion

The obtained results allow for a substantiated ap-
proach to planning the scope of highly dependable ob-
jects testing. The input information is the manufacturer-

supplied information on the requirement to confirm the 
lower bound of the product’s PNF with given confidence 
level. The formulas obtained in the paper enabled the 
research of the dependence of the scope of testing from 
the experiment duration. It is shown that the longer is 
the experiment duration, the fewer products must be 
supplied for testing. The dependence is non-linear and 
conditioned by the parametrization of the failure rate 
function. New asymptotic results have been obtained 
that allow adequately assessing the number of tests for 
a given time period.
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