
11

Characteristic features of LUT setting codes
of Intel FPGAs
Sergey F. Tyurin, Perm National Research Polytechnic University, Perm, Russia
Andrey S. Prokhorov, Perm National Research Polytechnic University, Perm, Russia

Abstract. State-of-the-art digital circuit design widely uses field programmable gate arrays
(FPGAs), in which the functions of logic cells and their connections are set up. That is defined
in the configuration file that is loaded in the configuration memory cells (static random ac-
cess memory) of FPGA from external memory. The logic itself is implemented in the so-called
LUTs (Look Up Tables), multiplexors that implement memory cells, are based on transmitting
transistors and represents a tree that is activated by a specific variable collection. The setting
is multiplexor data, therefore logical (switching) function values for the specific collection are
transmitted to the tree output. As it turns out, the associated LUT setting code can be decoded
and used for analyzing synthesis results in Quartus II by Altera that has been acquired by
Intel. Now Intel also specializes in FPGA production. The article considers an example of the
synthesis of a simple combinational finite state machine that implements the so-called major-
ity function (2 out of 3). This function equals 1 if the majority of variables equals 1. Majority
function implementation diagram is synthesized in Quartus II that builds a special BDF (Block
Diagram/Schematic File) file. The resulting diagram is examined with Map Viewer. In the ap-
propriate diagram, LUT (Logic Cell Comb) setting codes for implementation of the specified
function are set forth in the form of four-digit hexacodes. Decoding is shown for setting codes
for logic cells of FPGA LUT type that describe the content of the respective truth tables of
functions that depend on the input variable machine. The article shows the code changes in
the process of diagram optimization by Quartus II with possible modification of the variables
sequence order and correspondence with the inputs of a four-input LUT without modifications
to the logical function. If Stratix IIGX FPGA is used that has the so-called adaptive logic modules
(ALM) with 6 inputs, Quartus II uses 64-bit codes (eight-digit hexacodes). Respective coding
is also examined in this paper.

Keywords: combinational machine, majority function (2 out of 3), logic cells, LUT (Look Up Ta-
ble), FPGA (Field Programmable Gate Array), Logic Cell Comb, adaptive logic module (ALM).

For citation: Tyurin SF, Prokhorov AS. Characteristic features of LUT setting codes of Intel
FPGAs. Dependability 2017; 2: 11-16. DOI: 10.21683/1729-2640-2017-17-2-11-16

Dependability, vol. 17 no.2 2017
Original article
DOI: 10.21683/1729-2646-2017-17-2-11-16

1. Introduction

Field Programmable Gate Arrays (FPGA) are based on ran-
dom access memory (RAM) units called LUT (Look Up Table)
[1-3]. The RAM units contain configuration information in the
form of truth tables of the required logical functions.

The QuartusII system by Altera (US) that manufactures
the FPGA allows synthesizing finite state machines. The
machine is defined not only by a diagram in the form of BDF
(Block Diagram/Schematic File), but also in the VHDL,
Verilog, AHDL and other hardware description languages,
as well as the State Machine File machine graph. QuartusII
generates setting codes of logic cells.

Of interest is the decoding of this configuration data
(Logic Cell Comb) and their comparison with specified logi-
cal functions of the machine. Let us define a simple machine
and examine the associated setting codes.

2. Resulting truth tables for a four-
input LUT

Let us assume that it is required to synthesize the imple-
mentation diagram for the three-variable switching function
(SF) no. 132. Let us build a truth table (Figure 1).

This SF no. 13210 is a so-called majority function that in
disjunctive normal form (DNF) is as follows:

Fig. 1. SF truth table no. 13210

Sergey F. Tyurin

Andrey S.
Prokhorov

Dependability, vol. 17 no.2 2017. Structural dependability. Theory and practice

12

Let us manually build the diagram of the form BDF
(Block Diagram / Schematic File), Figure 2.

Fig. 2. Basic circuit diagram of the majority
function in the form of QuartusII BDF

(Block Diagram / Schematic File)

In Figure 2, the diagram inputs are marked as bus “+”
of the Vcc power supply unit, the inputs are “pulled up” to
the voltage, i.e. at the inputs in the initial state there are
logical units. By FPGA-compiling the project (e.g. EP2-
C5AF256A7) we obtain a report file (Figure 3).

Fig. 3. Diagram compilation results in the EP2C5A-
F256A7 FPGA

Let us analyze the report produced by Map Viewer. The
RTL (register transfer level) diagram is shown in Figure 4.

The RTL diagram is practically identical to BDF and does
not contain configuration information, but it is present in
the report of the Technology Map Viewer in the hexacode
form (Post Mapping, after the allocation of FPGA cells in
the “map”) (Figure 5).

Fig. 5. Technology Map Viewer (Post Mapping)

Thus, QuartusII by Altera has “packed” our diagram into
a single FPGA logic cell. Let us decode the 033F setting
code of the logic cell LOGIC_CELL_COMB (Figure 6)
by comparing the input variables with the 4-input logic
cell inputs.

Fig. 6. 033F decoding – Post Mapping

As we can see, the coding, as it should, begins with the
higher orders of the truth table, where the inputs of the logic
cell are in the order D, C, B, A, while the variables are in
the order c, a, b. As Figure 5 shows a z output inversion, the
033F code is an inversion of the desired majority function
f(abc). As we can see (Figure 5), input A is not used because
the function depends on tree variables and QuartusII chose
to use only the inputs B, C and D.

Let us now examine Technology Map Viewer (Post Fit-
ting, i.e. after connections optimization), Figure 7.Fig. 4. RTL file

13

Characteristic features of LUT setting codes of Intel FPGAs

Fig. 7. Technology Map Viewer (Post Fitting)

Figure 7 shows that input connections have changed,
which probably is the optimization of connections. Let us
decode the code with the new variable connections.

Fig. 8. 033F decoding – Post Fitting

The 033F coding does not change, because the majority
function does not depend on the variables sequence order.
Thus (from top to bottom) 033F is acquired.

3. Acquisition of the truth tables
for a six-input ALM

Now, let us define a more complex Stratix IIGX
FPGA that has the so-called adaptive logic modules
(ALM) with not 4, but 6 inputs [4-6]. We obtain a report
(Figure 9).

We can see that the report in Figure 9 features adaptive
LUTs (ALUTs), their coding is 64-bit, i.e. 16 hexadecimal
digits (Figure 10).

As previously, there is an output inversion. Let us decode
part by part the setting, code E8E8E8E8E8E8E8E8, that
also should be an inversion of the majority function. We
will take into consideration the additional inputs F and E
(Figure 11).

Fig. 11. Decoding of a part of E8E8 code (Post Mapping),
first part of the truth table

However, in this case the majority function is not imple-
mented. An inversion is implemented instead. Why? Let us
try the coding from low orders (Figure 12).

Thus, the noncompliance of the ALUT settings with the
required function can be explained by the “inverted” coding,
i.e. from low orders (from the top of the table in Figure 12).
That might be caused by the large size of the truth table.

Fig. 9. Stratix IIGX FPGA compilation results

Fig. 10. Technology Map Viewer (Post Mapping)
for a Stratix IIGX FPGA diagram

Dependability, vol. 17 no.2 2017. Structural dependability. Theory and practice

14

The remaining three parts of the truth table are shown in
Figures 13 – 15.

Fig. 13. Decoding of a part of E8E8 code from low orders
(Post Mapping), second part of the ALUT truth table

Let us examine the coding of Post Fitting for a Stratix
IIGX FPGA diagram (Figure 16).

We can see that now the variables have “shifted” towards
the higher orders F and E. Therefore, the code is different.
Let us verify the implementation of the specified function
(Figure 17).

Fig. 12. Decoding of a part of E8E8 code from low orders
(Post Mapping), first part of the ALUT truth table

Fig. 14. Decoding of a part of E8E8 code from low orders
(Post Mapping), third part of the ALUT truth table

Fig. 15. Decoding of a part of E8E8 code from low orders
(Post Mapping), forth part of the ALUT truth table

Fig. 16. Technology Map Viewer (Post Fitting)
for a Stratix IIGX FPGA diagram

15

Characteristic features of LUT setting codes of Intel FPGAs

4. Conclusions

Given the above, the hexacodes, LUT configuration data
(LOGIC_CELL_COMB), can be transformed into truth
tables of the respective logical functions. The variables
sequence order (the “base” of variables) can be arbitrary
and changes when the diagram is optimized (when changing
from Post Mapping to Post Fitting), yet the function itself
remains unchanged.

The coding discrepancy (LOGIC_CELL_COMB) be-
tween the Stratix IIGX FPGAs with a 6-variable adaptive
logic module (64 bits, 16 hexadecimal digits) and FPGAs
with a 4-variable LUT (16 bits, 4 hexadecimal digits) can
be explained by the use of “reverse” coding. In this case,
LOGIC_CELL_COMB starts with not the higher, but the
lower orders of the truth table. The above decoding should
complement laboratory classes of the implementation of
digital machines in the Quartus system [7].

Fig. 17. Decoding of the first part the ALUT FFFF code
from low orders (Post Fitting)

Fig. 18. Decoding of the second part the ALUT CCCC
code from low orders (Post Fitting)

Fig. 19. Decoding of the third part the ALUT CCCC code
from low orders (Post Fitting)

Fig. 20. Decoding of the forth part the ALUT 0000 code
from low orders (Post Fitting)

Dependability, vol. 17 no.2 2017. Structural dependability. Theory and practice

16

References

1. Ugriumov EP. Tsyfrovaya skhemotekhnika: oucheb-
noie posobie [Digital circuit design: a study guide]. Saint
Petersburg: BHV-Petersburg; 2004 [in Russian].

2. Tsybin S. Programmiruemaia kommutatsia PLIS:
vzgliad iznutri [Software switching of FPGA: a look from
the inside], <http://www.kit-e.ru/articles/plis/2010_11_56.
php> [accessed on 16.12.2014] [in Russian]/

3. An Ultra-Low-Energy, Variation-Tolerant FPGA
Architecture Using Component-Specific Mapping [Elec-
tronic resource], <http://thesis.library.caltech.edu/7226/>
[accessed on 11.11.14].

4. Zolotukha R, Komolov D. Stratix III — novoye se-
meystvo FPGA firmy Altera [Statix III, a new FPGA family
by Altera], <http://kit-e.ru/assets/files/pdf/2006_12_30.pdf>
[accessed on 28.11.2015] [in Russian].

5. Ispolzovanye resursov PLIS Stratix III firmy Altera
pri proektirivanii mikroprotsessornykh yader [Use of
the resources of Stratix III FPGA by Altera in the design
of microprocessor cores], <http://www.kit-e.ru/articles/
plis/2010_2_39.php> [accessed on 27.11.2015] [in Rus-
sian].

6. Logic Array Blocks and Adaptive Logic Modules in
Stratix III Devices, <https://www.altera.com.cn/content/dam/
altera-www/global/zh_CN/pdfs/literature/hb/stx3/stx3_si-
ii51002.pdf> [accessed on 29.11.2015] [in Russian].

7. Tyurin SF, Gromov OA, Grekov AV. Realizatsia tsi-
frovykh avtomatov v systeme Quartus firmy Atera: labora-
torny praktikum [Implementation of digital machines in the
Quartus system by Altera: a laboratory practicum]. Perm:
PNRPU Publishing; 2011 [in Russian].

About the authors

Sergey F. Tyurin, Honourable Inventor of the Russian
Federation, Doctor of Engineering, Professor of Automation
and Remote Control, Perm National Research Polytechnic
University. Perm, Russia, e-mail: tyurinsergfeo@yandex.
ru

Andrey S. Prokhorov, post-graduate, Department of
Automation and Remote Control, Perm National Research
Polytechnic University. Perm, Russia, e-mail: npoxop007@
yandex.ru.

Received on 06.03.2016

