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LIMIT RELIABILITY OF STRUCTURAL REDUNDANCY

In many cases, reliability can be improved by using the redundancy of system components. This is an 
approach that is applied especially in information systems. In this paper we study redundant systems 
with imperfect switches. We show that there exists a limit as the number of redundant components tends 
to infinity. This limit is defined for typical exponential time distribution to a failure of digital equipment in 
information systems. Bound estimates are given for the system elements with distributions belonging to 
the NBUE (new better than used in expectation) or NWUE (new worse than used in expectation).

Keywords: structural redundancy, classification of types of structural redundancy, parallel system, failure 
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Introduction

In order to improve the reliability of a system, there are mainly two possibilities. The first 
one is to improve the reliability of the system components. The second is to implement re-
dundancy [1]. Redundancy is an availability of possibilities in a technical object in excess of 
those that are minimally required to ensure its normal functioning. If one discards influences 
as costs and needed space, one might come to the conclusion that using redundant items, one 
could improve system reliability up to an arbitrarily high level. In this paper we will discuss up 
to which limit it is possible to improve an object’s reliability. In this paper we will show that, 
under several assumptions, reliability cannot be improved further than to a certain limit. 

In section 2 we will describe the main assumptions of our model. In the next two chapters 
we consider two boundary modes of standby – hot standby and cold standby. Hot standby 
means that the load on the standby component is the same as on the main component and that 
no load sharing between the redundant components occurs. Cold standby describes a situation, 
where the redundant devices do not age at all during their standby phase, i.e. when the main 
component provides the service. All other modes of standby will describe modes of ageing 
that are between these two situations of load on the redundant components.

In the third section we describe the situation of hot standby, the worst case regarding ageing.
In the fourth section, we discuss the situation of cold standby, no ageing of the standby 

components.
Section five provides an example, and in section six we give a summary and conclusion.

Main assumptions

For the model the following assumptions shall hold:
а) Detection and switching to another component is not perfect. Besides when we speak 

about a failure criterion in switching of a redundant component instead of the failed main one 
we mean such an event, when either a switching device fails provided that a failure is properly 
detected, or a failure is not detected provided that a switching device is available, or a failure 
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of the main component is not detected while a switching 
device is in state of failure. This residual probability of a 
failure in switching is denoted in this paper as γ;

b) The lifetime of the components is random and follows the 
lifetime distribution F(x) with F(0) = 0 and ;

c) The failure times of all redundant components are 
completely statistically independent from each other;

d) The number of redundant components is not limited;
e) All redundant components have the same lifetime 

distribution;
f) The lifetime distribution of the components is continu-

ous, differentiable and has a finite mean and tends to 1 as 
the time tends to infinity.

The model has been described in more detail in [2].
Parallel systems with imperfect switching to redundant 

components will be called imperfect systems in this paper.
The following figure (Fig. 1) shows an example of a 

system with redundant components. Each of the m, possibly 
different, components has n redundant replications. We will 
study this type of systems for n→∞.

In the following subsections we will simplify the system 
in Figure 1 by considering only one component with its 
redundant replications.

Hot standby

For hot standby, all components are under full load from 
the beginning. So this is in fact a situation of a simple parallel 
system. Assume that a component with lifetime distribution 
F(x) is connected in parallel with all its replications. The 
following Figure 2 shows the reliability block diagram of 
the system. Assume that n components are connected in 
parallel.

The lifetime distribution of the parallel system with hot 
standby can now be computed as follows.

In order to achieve a redundancy of level k, where k are 
components functioning, k-1 successful switchovers are 
necessary with a failure on the k-th switch-over. The prob-
ability of this event is (1 – γ)k-1γ. The distribution function 
of k identical unit with lifetime distribution F(x) is

 1 – (1 – F(x))k. (1)

Combining both expressions and summing up by k, we 
arrive at

 
 (2)

If now k tends to infinity, the formula (2) turns into

 
, (3)

where G(x) denotes the distribution function of the life-
time of the redundant system.

Moreover, one can observe that 

Fig. 1. System with redundant components

Fig. 2. System with parallel structure of components



11

LIMIT RELIABILITY OF STRUCTURAL REDUNDANCY

 
, (4)

which follows easily from

γF(x) ≤ F(x) – (1 – γ)F(x)2 

and (1 – γ)F(x) ≥ (1 – γ)F(x)2.

The latter is obvious since F(x) ≥ F(x)2.
Considering (4), one can see that G(x) distribution is 

smaller than the distribution of a single component, but even 
in the limiting case, it does not vanish. This is only possible 
for perfect switching, i.e. with γ = 0. For all positive values 
of γ, which means imperfect switching, G(x) will form a 
lower bound for all systems with a large but finite number 
of redundant elements.

Now we can compute the mean lifetime by

 
. (5)

For an exponential distribution, one computes

 
. (6)

For γ = 1 this gives 1/λ, which is the result for the 
exponential distribution without redundancy. Again, for 
imperfect switching mG always stays bounded and its value 
is determined by mF and γ.

Now, for a function that belongs to the NBUE or NWUE, 
we can show that an expression as (1) is an upper (lower) 
bound on the mean value of the distribution function G.

A lifetime distribution function is called NBUE (NWUE), 
if it satisfies:

,

where mF is the mean of F(x) [2].
If now F(x) belongs to the class NBUE (or NWUE) the 

following inequality holds [1]

 . (7)

This result can be proven as follows.
We rewrite (6) in the following form:

 
. (8)

Integrating this expression by parts, we arrive at

 
. (9)

Using the NBUE (NWUE) property, formula (9) can be 
rewritten as:

 (10)

and integrating by parts again

 
 (11)

Using expression (3), we can derive an inequality for the 

residual life function .

Using (3), we arrive at

Integrating by parts, we get

For a NBUE (NWUE) distribution this leads to 

Integrating by parts again, this expression equals to

.

For the exponential distribution, the equality holds 

.

Cold standby

The case of cold standby is the other extremal case. Here, 
the lifetime distribution of a parallel system is computed by
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, (12)

where F(i)(x) denotes the i-fold convolution of the distribu-
tion function F(x). The convolution is defined by

F(1)(x) = F(x)

for the first order convolution, all higher orders are de-
fined iteratively by

 
. (13)

Formula (12) is derived from the probability (1 – γ)k-1γ 
for a failure of the system when the switching to the i-th 
redundant component and the lifetime distribution F(i)(x) 
of i components used successively.

For the type of distributions given by (12), a general 
analytical solution does not exist. However, the following 
results can easily be obtained:

For an exponential distribution with density f(x) = λexp(–λx), 
one obtains [2]

 . (14)

If γ = 1 (switching fails always), we arrive at the usual 
exponential distribution of a single component.

The result (9) can be easily derived by using

  (15)

and computing the density g(x).
Using results of [3], we can also derive other analytical 

results for special Gamma distributions that have the fol-
lowing form:

  (16)

The results are given in Table 1.

Also, it has been shown in [3] that

 mG = mF/γ (17)

Therefore, no approximation for mG needs to be given.
One may note that the mean is limited, even if the number 

of redundant devices becomes infinite.
The distribution function G(x) cannot be obtained ana-

lytically in the general case. So, it is worthwhile to have a 
bound on it.

In [3] it has been shown in theorem 3.2 that if F belongs 
to the class NBUE (NWUE), the same holds for G. An analo-
gous result has been proven for the class HNBUE (harmonic 
new better than used in expectation) and HNWUE (harmonic 
worse than used in expectation) in theorem 3.4. The latter 
result can be used to give a bound on G.

If F is HNBUE (HNWUE), we have for the distribution 
G the following inequality for the residual life function 
(see [4])

 
 (18)

Also this expression shows that an infinite number of 
redundant devices is not able to improve the residual life 
function further than to a certain value. For HNBUE distribu-
tions, we derived an upper bound on an infinitely increasing 
number of redundant devices.

Example
In this section we will show how the mean lifetime de-

pends on the number of components used for redundancy and 
how it depends on the probability γ of failure of switching 
for a cold standby system.

From (5) we have

.

Table 1. Density functions g(x) for special types of gamma densities for f(x)

Parameters Density g(x) of the parallel system

α = 1/2

α = 1

α = 2

α = 3

α = 4
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For a system as in Fig. 1, consisting of m components 
connected in series each having k redundant replications 
this gets

.
This distribution has the mean 1/(λγk). Now the relative 

mean of the system with redundancy over a system consist-
ing of one element with failure rate λ is R = 1/(γk). Let us now 
denote by α = 1 – γ the probability that detection of a fault 
and switching to the redundant component are successful. 

For k = 1 the mean life time is plotted by a simple line (Fig. 3). 
One can observe that with increasing degree of redundancy (k) the 
mean lifetime grows. Also, with increasing α, i.e. with increasing 
quality of switching, the mean lifetime also increases.

Discussion and conclusions

Now we can provide the following limits for the different 
types of systems (Table 2).

Note that the limit itself is an upper bound for systems with 
a finite number of redundant components. So, the upper bounds 
for real systems with a finite number of components is given by 
the NBUE / HNBUE limits. This is given in Table 3.

An imperfect system cannot achieve better values than 
given in Table 3 for components that satisfy the NBUE or 
HNBUE property as given in the table above.

In this paper we have obtained distribution functions 
for parallel systems in the case that switching to redundant 
devices is not perfect. It has turned out that there exists a 
limit and reliability cannot be improved up to 1. This can 
only be reached if switching is perfect.

This implies that at a certain stage of system development 
it is worthwhile to improve the reliability of the switching 
algorithm than to implement further additional redundant 
devices.
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Table 2. Limits for parallel systems with an independent number of components

Characteristics Limit for hot standby Limit for cold standby

G(x)

mG For F being NBUE (NWUE), equality holds 
for the exponential distribution

mG = mF /γ

Residual life 
For F being NBUE (NWUE), equality holds 

for the exponential distribution 

For F being HNBUE (HNWUE), equality 
holds for the exponential distribution 

Table 3. Upper bounds for imperfect parallel systems

Characteristics Limit for hot standby Limit for cold standby

G(x)

mG For F being NBUE
mG = mF /γ

Residual life 
For F being NBUE For F being HNBUE

Fig. 3. Relation of means R = 1/(γk) depending on α 


