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Aim. One of the stages of dependability analysis of technical systems is the a priori analysis 
that is usually performed at early design stages. This analysis a priori has known quantitative 
dependability characteristics of all used system elements. As unique, non-mass produced or 
new elements usually lack reliable a priori information on quantitative dependability character-
istics, those are specified based on the characteristics of technical elements already in use. 
A priori information means information retrieved as the result of dependability calculation and 
simulation, various dependability tests, operation of facilities similar in design to the tested 
ones (prototypes). From system perspective, any research of technical object dependability 
must be planned and performed subject to the results of previous research, i.e. the a priori 
information. Thus, the a priori analysis is based on a priori (probabilistic) dependability charac-
teristics that only approximately reflect the actual processes occurring in the technical system. 
Nevertheless, at the design stage, this analysis allows identifying system element connections 
that are poor from dependability point of view, taking appropriate measures to eliminate them, 
as well as rejecting unsatisfactory structural patterns of technical systems. That is why a priori 
dependability analysis (or calculation) is of significant importance in the practice of technical 
system design and is an integral part of engineering projects. This paper looks into primary [1] 
continuous distributions of random values (exponential, Weibull-Gnedenko, gamma, log normal 
and normal) used as theoretical distributions of dependability indicators. In order to obtain a 
priori information on the dependability of technical systems and elements under development, 
the authors present dependences that allow evaluating primary dependability indicators, as well 
as show approaches to their application in various conditions. Methods. Currently, in Russia 
there is no single system for collection and processing of information on the dependability of 
diverse technical systems [3] which is one of the reasons of low dependability. In the absence 
of such information, designing new systems with specified dependability indicators is associ-
ated with significant challenges. That is why the information presented in this article is based 
upon the collection and systematization of information published in Russian sources, analysis 
of the results of simulation and experimental studies of dependability of various technical sys-
tems and elements, as well as statistical materials collected in operation. Results. The article 
presents an analysis of practical application of principal continuous laws of random distribution 
in the theory of technical systems dependability that allows hypothesizing the possible shape 
of system elements failure models at early design stages for subsequent evaluation of their 
dependability indicators. Conclusions. The article may be useful to researchers at early stages 
of design of various technical systems as a priori information for construction of models and 
criteria used for dependability assurance and monitoring, as well as improvement of accuracy 
and reliability of derived estimates in the process of highly reliable equipment (systems) de-
velopment.
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Introduction
System failures can be described using models designed 

for application in various dependability-related tasks that 
treat differently the system of factors that are intrinsic to 
the nature of failure.

The random nature of failures over the course of technical 
systems and components operation allows describing those 

using probabilistic statistical methods. The most commonly 
used failure models are based on distributions of associated 
random values, i.e. times to failure of non-repairable items 
and times between failures of repairable items.

As the primary types of distributions of item times to 
failure we should emphasize the following ones [1]:

- exponential
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- Weibull-Gnedenko
- gamma
- lognormal
- normal.
A review of the available literature sources on technology 

dependability resulted in the evaluation of practical applica-
tion of those laws in the context of studying various technical 
objects. Based on the performed analysis, an appropriate a 
priori distribution of corresponding dependability criterion 
or indicator can be selected.

Exponential distribution

While being a special case of the Weibull-Gnedenko 
distribution (if α=1), the exponential distribution is of 
significant interest in itself as it adequately describes the 
distribution of element operation time within the period of 
normal operation. The practical popularity of the exponential 
law is explained by not only its various potential natural 
physical interpretations, but its exceptional simplicity and 
convenience of its simulation properties. Below are the 
formulas for identification of density and probability of 
no-failure over the time t as per this law:

f(t)=λ⋅e–λt;

P(t)=e–λt,

where λ is the failure rate. 
The expectation m and mean-square deviation m for 

the exponential distribution are expressed through its 
parameter:

m=1/λ,

σ=1/λ.

Mean time to first failure is equal to

Тave=m=1/λ.

The exponential distribution is often used at the design 
stage when information on the dependability of the elements 
of the system in development is limited or absent. That is 
why it is often called the principal law of dependability 
[2]. The limiting factor of this law’s application is the re-
quirement of utmost simplicity of the failure and renewal 
streams (they must be ordinary, stationary and devoid of 
consequences) [3].

According to [4 – 12], exponential distribution provides 
a good description of the dependability of technology oper-
ated after the end of the wear-in until significant degradation 
failures, i.e. within the period of normal operation when 
sudden failures take place. In [2, 7], it is said that the time 
to failure of technical systems with large numbers of serially 
connected elements can be described with this distribution 
if each of the elements individually does not significantly 

contribute to system failure. In case the failures of serially 
connected elements have an exponential distribution, then 
the system’s own failures will be subject to that law and 
its failure rate will be equal to the sum of the elements’ 
failure rates. Regard must be paid to the fact that systems 
that contain elements connected non-serially dependability-
wise will not display exponential distribution despite the 
exponentiality of probabilities of failure free performance 
of its component elements [3].

As each element of a system in turn is itself a subsys-
tem comprising several or commonly a larger number of 
elements, the total failure rate of the system’s elements 
depends only on the number of faulty elements, while the 
time of repair of each faulty element has an exponential 
distribution. A failure of such subsystem is a failure of one 
of its elements that in maintenance is replaced with a new 
one. The net operating time of a subsystem defines that its 
failure flow is a sum of a large number of flows and, accord-
ing to the Khinchin limiting theorem, it is asymptotically a 
Poisson stream. Therefore, we can conclude that the time 
interval between adjacent failures will have exponential 
distribution [13, 14].

The exponential law should be applied to those complex 
technical systems in which there are many different destruc-
tive processes that unfold simultaneously at different rates. 
However, as the difference in the rates at which the proc-
esses develop declines, the distribution approaches normal, 
if same-type destructive processes prevail, the distribution 
is exactly normal [11].

The authors of [2, 4, 6, 15] believe that in the context of 
solving problems related to complex system maintenance, if 
the renewal stream is simple, the exponential law should be 
applied when describing the renewal rate, labor intensity of 
current maintenance and failure recovery. In mass service, 
the intervals between repairs of equipment are also describ-
able in terms of the exponential law [3]. 

As during normal operation sudden failures normally 
occur due to external effects, the replacement of an old 
element with a new one cannot influence the failure cause. 
Due to that, under exponential failure law there is no need 
for preventive measures, e.g. replacement of elements or 
their scheduled maintenance [16].

Some believe [2, 3] that if we consider the physical 
nature of sudden failures, the exponential law can be used 
to approximate the probabilities of no-failure of a large 
number of technical objects, primarily electronic equipment, 
electrical and electronic devices, hardware and software 
systems, etc. 

However, despite the simplicity and universality the 
exponential law has a number of limitations. In particular, 
some papers [3, 13, 17] question the applicability of the 
exponential distribution law to sustained operation sys-
tems and over long intervals of time due to the following 
considerations:

– due to the fact that this distribution is characterized by 
“memorylessness”, it has a significant disadvantage, i.e. 
contradiction with natural physical representations. This 
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property means the absence of aging, i.e. a technical object 
does not age or, upon a certain time of operation will have 
a failure distribution identical to the one of a new object, 
which is inappropriate for the operation of many technical 
objects, especially over long periods of time [3,13, 17]. 

– in [3] it is claimed that the exponential distribution 
law is not applicable to complex technical systems, as due 
to non-simultaneity of the elements’ operation and pres-
ence of failure aftereffects, the failure rate of a complex 
system cannot be permanent even if the failure rates of 
its elements are permanent. Therefore, this law cannot 
be used for dependability analysis of actual long-term 
operation technical systems, and the basic premises in the 
models are not adequate to the physical processes within 
the systems.

That points to the fact that you need to have sufficiently 
valid reasons to use exponential distributions, just like any 
other. Nevertheless, this distribution is common, which is 
due to the following:

– simplicity and dependence on only one parameter λ. 
This and the absence of aftereffect allow solving many 
tasks of the dependability theory and deliver solutions in 
an explicit analytical form;

– it has been proven that the time before failure of 
complex high-dependability repairable systems can be 
described with an exponential distribution under certain 
conditions (e.g. possibility to disregard the effect of ma-
terials “aging”);

– under certain conditions the application of the expo-
nential law in the cases when it is not appropriate allows 
achieving low dependability indicators, i.e. lower estimate, 
which is often acceptable. 

Normal distribution law (Gaussian law)

The completeness of the theoretical research regarding the 
normal law, as well as comparatively simple mathematical 
properties make it the most attractive and easy to use. If the 
studied empirical data deviates from the normal law, there 
are the following ways it could be used:

- use it as the initial approximation. In many cases this 
assumption yields sufficiently accurate results;

- fit a transformation of the studied random value ξ,  that 
would change the initial “non-normal” law into a normal 
one [14]. 

An important property of this law is its “self-reproduci-
bility” that consists in the fact that the sum of any number 
of normally distributed random variables also follows the 
normal distribution law.

The distribution density of this law is defined by the 
formula:

.

Normal distribution dependability function is calculated 
using the following formula:

,

where  is the Laplace’s function of 

which the values are tabulated.
The mean time before failure is equal to Тave=m, and the 

relation between the time to first failure  and value Тave is 
expressed with the formula:

.

The failure rate for the normal distribution is the increas-
ing function that is defined by formula:

,

where F( ) is the function integral of the form 

.

The normal law is used to describe the dependability of 
technical facilities over the period of aging [2, 4, 6, 18]. In a 
number of sources [6 – 9, 19 – 22] it is stated that it is used 
in the cases when the failures are gradual and are caused 
by directional physicochemical changes due to deterioration 
(aging), and the coefficient of variation υ≤0,3÷0,4 [7, 23]. 
Under stable conditions and modes of operation during 
this period the Gaussian distribution matches well with the 
mean and gamma-percentile life distribution [7], as well as 
machine’s original life [4]. 

It is important to note that normal distribution of time 
before failure comes from the uniformity of technical objects 
quality, permanent average rate of deterioration and realiza-
tion of deterioration as they long move and intertwine until 
failures start occurring [16]. 

The particular feature of the normal law application is as 
follows: if σ values are low compared to mean time before 
failure m, the density is fairly close to zero within a signifi-
cant time interval, which lets us conclude that within this 
interval the probability of failure is very low. That reflects 
the fact that granted the deterioration level is high and ac-
cumulated deterioration is low the probability of failure is 
low. That is exactly the reason for the forced replacements 
(repairs) at low levels of deterioration that enable a low 
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probability of failure between repairs [16]. In turn, for the 
exponential distribution that reaches maximum density if 
t = 0, most failures occur at the beginning of operation. 

The statistical analysis, e.g. in [2, 11] of the test and 
operation results of mechanical units and metal structures 
subject to intense deterioration, aging and fatigue, shows that 
strength and load distribution are described with the normal 
law with associated probability densities. In some units a 
combination of exponential and normal distributions was 
observed. Such composed distribution is possible if units 
and parts of a device are simultaneously subject to sudden 
and deterioration failures. In hydraulic carrying systems and 
geared pumps the normal law describes the time between 
failures [11]. It must be noted that such random values as 
measurement and manufacturing errors, etc. also follow the 
Gaussian law. [16].

Logarithmically normal distribution

A random value ξ is lognormally distributed when its 
logarithm is distributed normally. A lognormal random value 
is affected by a large number of mutually independent fac-
tors, while the effect of each individual factor is “uniformly 
insignificant” and equally possible in sign. Unlike in the case 
of normal distribution, the sequential nature of the effect of 
random factors means that the random gain caused by the 
action of each further factor is proportional to the already 
achieved studied value. 

The distribution density is defined by the formula

,

where µ and s are the parameters evaluated by the results 
of n tests to failure;

;

.

For the lognormal law, the dependability function is as 
follows: 

.

The expectation of the time before failure and mean-
square deviation are determined from the formula:

;

.

In the case of lognormal distribution the failure rate will 
be equal to [23]

.

A lognormal distribution is a distribution of positive 
variables, hence it is somewhat more accurate than the 
normal distribution [2]. It describes the behavior of the time 
between failures of objects that «strengthen» over time. The 
«strengthening» causes a slow decrease of deterioration rate. 
That is why before using the lognormal distribution it is nec-
essary, on the basis of the physical nature of the deterioration 
process and, if possible, analysis of deterioration realizations 
behavior, to establish whether the studied technical objects 
have a tendency for «strengthening» [16].

This distribution also describes the following: renewal 
processes; longevity of products operating during the aging 
period when the deterioration increment is proportional to 
instantaneous deterioration [7, 14, 19]; operation times in the 
situation of rapid «burnout» of undependable elements; fail-
ures occurring as the result of material fatigue, in particular, 
description of operation time of ball bearings [3, 7].

In general, lognormal distribution adequately describes 
the times to failure of complex technical systems (tractors, 
automobiles, special heavy-duty vehicles, etc.), as well as 
electronic equipment [2].

Gamma distribution

Gamma distribution has a two-parameter distribution with 
the shape parameter (α>–1) and scale parameter (β>0):

.

The probability of no-failure is defined using the for-
mula:

,

where  is the gamma function;

 is the incomplete gamma 

function.
The expectation (mean time between failures) and mean-

square deviation for the gamma distribution are equal to:

Тave=m=αβ;

.
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The failure rate formula is as follows:

.

Gamma distribution serves to describe deterioration fail-
ures; failures due to damage accumulation; description of 
operation time of complex technical systems with redundant 
elements; renewal time distribution [2, 7, 10, 16]. It can also 
be used for longevity (lifetime) analysis of certain technical 
objects [17].

Gamma distribution has a number of useful properties:
1. If α<1 the failure rate monotonically decreases which 

corresponds to a rapid “burnout” of undependable ele-
ments. 

2. If α>1 the failure rate increases, gradual deterioration 
and aging of elements takes place. 

3. If α=1 gamma distribution matches the exponential 
one and can be used to describe the probability of failures 
in normal operation of a technical system [18]. 

Given the above, we can conclude that gamma distribu-
tion may be used at all stages of the lifecycle: wearing-in 
(α<1), normal operation (α=1) and aging (α>1) [20].

4. If α>10 gamma distribution practically matches the 
normal one and therefore can be used to describe the prob-
ability of failures of aging units, mechanisms and other 
elements [16, 18]. Also, if P(t)→∞ the gamma distribution 
approaches the normal distribution law. For this reason 
it is often used for approximation of those unimodal, but 
nonsymmetrical distributions that are poorly approximated 
with normal distribution [9, 12]. 

5. If α is a positive integer, then in [2, 7] the gamma 
distribution is also called Erlang distribution. 

6. If λ=1/2 and α is divisible by 1/2, then the gamma 
distribution matches the ch-square distribution [2, 7].

On the assumption of [13] in respect to the tasks solved 
in terms of the Laplace transformation the gamma distri-
bution can be conveniently used to approximate natural 
distributions.

In [11, 12], the following definition is given: gamma 
distribution is the characteristic of the time of failure occur-
rence in complex electromechanical systems in cases when 
sudden failures of elements take place at the initial stage of 
operation or system debugging, i.e. it is a convenient char-
acteristic of the time of failure occurrence in the equipment 
during the wear-in period.

In complex technical systems that consist of elements 
of which the probability of no-failure has an exponential 
distribution, the probability of no-failure of the system as a 
whole will have a gamma distribution [11].

The distribution of the failure occurrence time in complex 
technical systems with redundancy (granted that failure 
flows of the primary and all backup systems are simple) can 
also be described with a gamma distribution [12]. Similarly, 
in cases of cold or combined redundancy the probability 

of no-failure of the system follows the generalized gamma 
distribution [3]. That said, it has been established [24] that in 
redundant systems (both repairable and non-repairable) there 
are always hidden failures, while the efficiency of their de-
tection is quite limited. Those factors have a significant effect 
on system dependability and require more detailed model 
design (e.g. using Markov or semi-Markov process).

Weibull‑Gnedenko distribution

The Weibull-Gnedenko distribution is a two-parameter 
distribution with the shape parameter α and scale parameter 
β that is characterized by the probability density function:

.

The connections between dependability indicators ap-
pear as follows:

,

,

,

.

This law has a wide range of use as it bridges over the 
fields of application of a number of other distributions, but 
is described with more complex formulas [4]. It can be used 
to describe:

- lifetimes of ball bearings, threads, splined shafts and 
other parts with simultaneous deterioration of several work-
ing faces [4];

- times to failure with simultaneous occurrence of sudden 
and deterioration failures [4];

- probability of no-failure of mechanical elements during 
aging or deterioration [3, 11, 12];

- lifetime of components of metal structures, supporting 
systems, support and rotation systems, hydraulic and electric 
drive systems in connection with fatigue and sudden failure 
(coefficient of variation of 0.35 – 0.70) [22].

- failure distribution during wear-in [2, 3, 21];
- operation times of special-purpose complex technical 

systems (mobile installations) in operation [2, 18];
- operation times of parts and components of automobiles, 

handling and other machinery subject to fatigue failures, ball 
bearings times to failure [2, 3]; 
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- distribution of mean and gamma-percentile life subject 
to fatigue failure in stable conditions and modes of opera-
tion [7].

In a number of cases [3, 8, 10] the Weibull-Gnedenko 
distribution is universal due to the following properties;

– if α=1 it transforms into exponential distribution;
– if α<1 failure density and rate functions decrease;
– if α>1 failure density and rate functions increase;
– if α=2 function λ(t) is linear, the distribution transforms 

into the Rayleigh distribution with density ;
– if α=3,3 the distribution is close to normal.
Due to its universality the Weibull-Gnedenko distri-

bution is recommended for priority application when 
processing experimental data on the dependability of 
technical facilities in situations when the type of the 
distribution function is not initially known [15]. Addi-
tionally, all natural distributions are approximated much 
better with this distribution rather than the exponential 
distribution [9].

Like the gamma distribution, the Weibull-Gnedenko dis-
tribution well suits the approximation of natural distributions 
at various lifecycle stages: wear-in (α<1), normal operation 
(α=1) and aging (α>1) [2, 14, 20]. 

Also, a complex technical system that is considered as 
a single structural entity comprising a large number of ele-
ments in each of which the time before failure is subject to 
gamma distribution, but the parameters of such distributions 
slightly vary from element to element, will have a distribu-
tion close to the Weibull-Gnedenko distribution [16, 20]. It 
should be noted that many technical objects contain large 
numbers of identical or similar in design elements that 
operate in similar conditions (e.g. an internal combustion 
engine has a number of cylinders, electronic equipment has 
a large number of capacitors, resistors, etc.). If the repeating 
elements of a technical system define the time before failure 
of the system, that produces a structure that would have the 
Weibull-Gnedenko distribution [16]. 

From the point of view of the physical nature of 
failures, the Weibull-Gnedenko distribution adequately 
describes the time before failure of many electronic 
equipment elements in case the failure of such elements 
is considered [16] as a deviation of a parameter beyond 
the specified limits.

Conclusion

In conclusion, it should be noted that beside the above 
mentioned types of distributions, solving some tasks in-
volves special types (several dozen in total), as well as 
discontinuous distributions that are not covered in this 
article. Distributions have various transitions and connec-
tions. Despite the existing goodness measures of the chosen 
theoretical and empiric distributions, all of them provide the 
answer to the following question: whether or not there are 
good grounds for discarding a hypothesis for the chosen 
distribution? The authors note that any data can be made to 
fit the multi-parametric law even if it does not correspond 

to real physical phenomena [7]. Thus, while choosing the 
type of distribution and its parameters one must first take 
into consideration the physical nature of the occurring proc-
esses and events.
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