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Abstract. Purpose. The paper describes main concepts and definitions, survivability indices,
methods used to estimate survivability in different external and internal conditions of applica-
tion of technical systems, including the studies in the field of structural survivability obtained 30
years ago within the frames of the Soviet school of sciences. An attempt is made to overcome
different understanding of technical survivability, which has been formed by now in a number
of industrial directions — shipping, aviation, communication networks, energy systems, in in-
dustries of defense. Besides, the problem is discussed in relation to the establishing of the
continuity between technical survivability and global system resilience. Technical survivability is
understood in two basic meanings: a) as a property of a system to resist to negative impacts;
b) as a property of a system to recover its operability after a failure or accident caused by
external reasons. This article also describes the relation between structural survivability, when
the logic of system operability is binary and described by a logical function of operability, and
functional survivability, when the system operation is described by a criterion of functional ef-
ficiency. Thus, a system failure is a fall in the level of its efficiency lower than the value pre-
determined in advance. Methods. Technical system is considered as a controlled cybernetic
system installed with specialized survivability aids (SA). Logical and probabilistic methods and
results of combinatorial theory of random placements are used in the analysis. It is supposed
that: a) negative external impacts (NI) are occasional and single-shot (one impact affects one
element); b) each element of the system has binary logic (operability — failure) and zero resist-
ance, i.e. it is for sure affected by one impact. Henceforth this assumption is generalized for
the r-time NI and L-resistant elements.

Besides, the work describes the variants of non-point models when a system’s part or entire
system are exposed to a group specialized affection. It runs about the variants of combination
of reliability and survivability, when both external and internal failures are analyzed. Results.
Different variants of affection and functions of survivability of technical systems are reproduced.
It has been educed that these distributions are based on simple and generalized Morgan num-
bers, as well as Stirling numbers of the second kind that can be reestablished on the basis of
simplest recurrence relations. If the allowances of a mathematical model are generalized for
the case when there are n of r-time negative external impacts and L- resistant elements, the
generalized Morgan numbers which participate in the estimate of the affection law, are defined
based o nthe theory of random placements, in the course of n-tuple differentiation of a gen-
erator polynomial. In this case it is not possible to establish recurrence relation among gen-
eralized Morgan numbers. It is shown that, under uniform allowances for a survivability model
(equally resistant elements of the system, equally probable negative external impacts) in the
core of relations for the function of system survivability, regardless of the affection law, there
is a vector of structure redundancy F(u), where u is the number of affected elements, F(u)
is the number of operable states of the technical system under u failures. Conclusion. Point
survivability models are a perfect tool to perform an express-analysis of structural complex
systems and to obtain approximate estimates of survivability functions. Simplest allowances
of structural survivability can be generalized for the case when the logic of system operabil-
ity is not binary, but is specified by the level of the system efficiency. In this case we should
speak about functional survivability. Computational complexity PNP of the task of survivability
estimation does not make it possible to solve it by the simplest enumeration of states of the
technical system and variants of negative external impacts, it is necessary to look for the ways
to egress from the blind enumeration, by transformation of the system operability function and
its decomposition, as well. Development and implementation of survivability property into a
technical system should be conducted with consideration of the property which is assured in
biological and social systems.

PART 2. Multivariate calculations

This paper is a closing article to the first one [1] and it reproduces multivariate calculations by
the procedure described in the references. Computational complexity of the task of survivability
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1. Introduction

In part [1] we gave a general definition to technical sur-
vivability, classified the main approaches to the analysis of
survivability, proposed the simplest models and methods of
the analysis, based on the theory of axiological probabilities,
random placements and logical functions of operability. In
the second part we shall discuss four main issues:

 computational complexity of tasks of survivability;

e multivariate calculations of survivability of the systems
with complex structure;

* functional survivability and its relation to structural
survivability;

* connection between technical survivability and mobi-
lization economic resilience.

2. Computational complexity
of survivability tasks and ways
how to overcome it

A task of survivability is set and solved on a Cartesian
product of two logical and probabilistic spaces: space of neg-
ative impacts (NI) and space of states of technical systems. In
the simplest case, both these spaces are discrete. In accord-
ance with the terminology of classic paper [2], the task of dis-
tribution of NI over the system elements is a P-complete or
a P-difficult, i.e. the number of calculations and the time of
calculations are in proportion to N”, where # is the number
of impacts, and N is the number of system elements. It has
long been known that for modern computers P-completeness
represents no difficulty, let even » be estimated by hundreds
and thousands which is impossible in reality. A different
matter is the assignment of a complete group of possibly
operable states, when from 1 to N-1 elements are sequentially
taken out from the system of N elements. Due to the fact
that in the task of structural survivability an element may be
in one of the states — operability or a failure (binary logic),
the total number of states of the system to be enumerated
is 2", computational complexity corresponds to the same
number. Thus, the survivability task becomes NP-difficult
and has its fixed range.

When logical and probabilistic methods of analysis were
pushing their way into science (in 1980s), when the most
common computers in the USSR were USEC of differ-
ent modifications, certain experiments established a limit
number of the system elements, exceeding of which did not
make it possible to solve the task of survivability analysis
for observable time. This number was N = 27. All attempts

estimation and the ways to overcome this problem are discussed. We also deal with a passing
from structural survivability to the tasks of functional survivability, establishing a conceptual joint
between technical survivability and mobilization resilience in economy.

Keywords: survivability, vitality, resilience, risk, negative impact, survivability margin, law of
vulnerability, function of survivability.

Citation format: Cherkesov G.N., Nedosekin A.O. Description of approach to estimating sur-
vivability of complex structures under repeated impacts of high accuracy (part 2) //
Depend- ability. 2016. No.3. P. 26-34. DOI: 10.21683/1729-2646-2016-16-3-26-34

to increase this number failed, until several approaches
were found to assure the pass from direct enumeration of
states to intent enumeration. As the result, the work of the
school of Prof. A.S. Mozhaev and his followers [3 — 5] led
to the situation when it turned to be possible to decompose
the graph of complex system into a main graph and its
sub-graphs (joint openings), as well as to develop logical
schemes of intent enumeration in the space of states. As the
result the limit number of elements in the main graph today
is 400, and in a sub-graph — 100 (data according to software
complex “ARBITR”).

Therefore, overcoming a “bane of limit number” in
relation to the tasks of structural survivability happened.
But we have won only the first position war, because when
passing from structural survivability to functional surviv-
ability, the space of states of the technical system ceases to
be numerable, and a “bane of limit number” comes back,
but in a frightening form. This feature is described in more
detail in section 5 of this work. In a similar way solution of
the task of structural survivability is becomes complicated,
if the frequency of impacts is r, and the element resistance
is L (or a discrete resistance in a model is substituted with
a probabilistic function of resistance).

Letus now describe the simplest examples of survivabil-
ity analysis (these solutions were originally demonstrated
in [6], including all figures and tables of section 3). All
examples are well estimated by hand and can serve as tests
for new algorithms of analysis, as degenerated cases.

3. Calculation of structural survivability
by the system state for the simplest
structures

3.1. System with bridge structure

of five elements

A system with bridge structure (Fig. 1) is exposed to
repeated point negative impacts. It is necessary to estimate
survivability by the system state supposing that the affection

B 8
e A
Fig. 1. System with bridge structure
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of elements under a single NI is equally probable, and the
resistance of elements in relation to the intensity of NI of
high accuracy is negligibly low.

Logical function of operability in an orthogonal disjunc-
tive normal form (ODNF) is as follows [7, chapter 4]:

F=XX,V X,X,X, VX, X5 X0, V X, X5 XX, X5 V X, X, X, X3 X5, (1)

Let us take formulas (31) and (32) from [1], setting m =5,
s,=2,N=5,5,=3,5,=4,s,=s,=5, and we will obtain

3 n
R(m)=(1=s,/N)"+Y, Y CIN"(1-s,/ N)"" +

k=2 i=1

2N i C! =2(0,6)" +2(0,4)" —5(0,2)".  (2)

i=1

Values R(n) with n < 5 are given in Table 1.

Table 1. Function R(n)

n 1] 2 3 4 5 6 7
R(n) | 1 ]0,84]0,52(0,3024]0,1744{0,10120,0592

Let us now take formulas (33) — (37) from [1] to define
R(n). For this purpose we shall use formula (37) to draw up
a table of coefficients L, (Table 2) and note that it does not
depend on the system characteristics (structure and number
of elements). That is why it can be used as a common table
to calculate survivability of any systems. Table 3 shows
the values of coefficients B, for nine operable structures
obtained from the basic structure by means of removal of
one, two or three elements (Fig. 2).

ER L 1 ] ER
s H s2
(e L2 ]
S4 H
[

s 1 }— 3
v 7 —{ 4+

H S3
[
L&
oy
—| L 2 | L4 |

{1 {5 H a1 s {2 +{85H 3
Fig. 2. Operable structures obtained from the basic
bridge structure

Multiplying the lines of matrix | IL,,k || by the columns
of matrix |B||, we shall get the matrix of coefficients
r,» expressing the number of ways which may be used to
pass form basic structure S, to structure S, under n-tuple
NI (Table 4). Putting the elements of one line together we
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Table 2. Numbers L,

Lnk
"kt [ k=2 [ k=3 [ k=4 | k=5 | k=6 | k=7
i1 ol oo o] o] o
21 0o | o
301 0o | o
41 1 | 14 | 36 | 24 0o | o
S| 1 | 30 | 150 | 240 | 120 | 0 | 0
6| 1 | 62 | 540 | 1560 | 1800 | 720 | ©
711 | 126 | 1806 | 8400 | 1680015120 5040

Table 3. Numbers B,

Kk ki
i=1|i=2|i=3 | i=4 | =5 | i=6 | i=7 | i=8 | i=9

1 1 1 1 1 1 0 0 0 0
210 0 0 0 0 3 3 1 1
0 0 0 0 0 1 1 0 0

will find the number of different disjoint events which
lead to an operable structure under n-tuple NI. It is easy
to show that values R(n) = r,/N" coincide with the values
listed in Table 4.

Using formula (5) from [1] and formula (2), we shall find
the average number of NI leading to loss of operability:

6=iR(n):1+

+i {200,6)" +2(0,4)" - (0,2)" }=4,083 (3

n=1

Table 4. Numbers r,,

Lo
M is] =6 | =7 s o | N
11 ] o] o] o] o]|s |5
2 1 |6 | 6 | 2 | 2 | 21| 25
30 1 | 24 | 24| 6 | 6 | 65 | 125
4 1 [ 78 | 78 | 14 | 14 | 189 | 625
S| 1 | 240 | 240 | 30 | 30 | 545 | 3125
6| 1 | 726 | 726 | 62 | 62 | 1581 |15625
7 | 1 | 2184 | 2184 | 126 | 126 | 4625 |78125

Average survivability margin d = 3,083. Significantly, for
this structure d= 2, and m = 3. Therefore, average survivabil-
ity margin is more than the maximum number of elements
that can be removed without loss of operability, more than
m-survivability. This effect is explained by the fact that cer-
tain elements appear in the field of NI for several times.

The system of calculation of this paragraph which is based
on Stirling numbers of the second kind, was completely
described in [6] and [10].
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3.2. Electric power system with
bridge structure of eight elements

Electric power system consists of generating power units
1 and 2, main distribution boards 3 and 4, jumper straps 8,
cables 5 and 6, distribution board7 (Fig. 3). It is necessary
to estimate survivability by the system state after repeated
NI, supposing that at each NI one element of the system
becomes non-operable, and the affection of the elements at
a single NI is equally probable.

{3 {5
o] _’~
-

2 {4}

Fig. 3. Structure of electric power system

Logical function of the system operability is as fol-
lows:

Fr= 0 (00,0 (05 v 2, X X)) V X, X, (06 VXXX ) 4)
Orthogonal disjunctive normal form:

F = XXX, V X\ X, X, XX, V X, X, X350, XX, V
VXX Xy Xy X5 Xg X VX X X3 X, X5 X g Xy X V

VX, X, X5 X, Xs X Xy X ®)

Thus, the logical function of the system operability con-
tains 6 implicants in total, including one implicant without
negation, three with one negation and two with two nega-
tions. Probabilities

P(Q,=1/4)=2"

P(Q,=1/4,)=Y,CIN'(1-5,/N)",

j=1

1=2,3,4;5,=5,5,=6,5,=7

n—1
P(Q,=1/4)=Y C/N"N=8,5,=s,=8.  (6)

j=1
According to (1) we have:
6
N PO =1]4,)=2"+8"(4"+2""-5)=

I=1

— 2—n+1 + 2—2n+] _ 5 X 273}1. (7)

Table 5. Function of survivability R(n)

n 1 2 3 4 5 6

139/ | 539/ | 2107/ 8315/
5122 | 4096 | 32768 | 262144

R 78] 12 | 8/56 | 135 0 0

R(n) | 7/8 |35/64

The results of calculations by formula (7) are listed in
Table 5.

The last line indicates the data of calculations by strategy
2, when the affected elements are excluded from the next
affection.

Average number of NI

@ =1+ {2(0,5)" +2(0,25)" -5(0,125)" }=2,9524
n=1

Average survivability margin d = 1,9524. It is substantial-
ly less than m-survivability (here m = 4). Survival rate of the
system is found using formulas (33) — (37) from [1]. We take
into account that except a basic structure, the system may
have nine more different operable decomposed structures
(i=1...9). Let us define coefficients B, first (Table 6).

Table 6. Numbers B,;

k ki
i=1...5 i= =7 i= i=

0 0

S|l | =
— sl —
— &l |~

1
2 1 1
3 0 0
4 0 0

Structures S,...S; occurs at the loss of only one element
(k=1),i.e.:1,2,5,6,8. Structure S, (1357) may occur at the
loss of one (4), two (24, 26, 46, 82, 84, 86), three (246, 248,
268, 468) or four (2, 4, 6, 8) elements. Similarly, structure
S, (2467) occurs at the loss of 1, 2, 3 or 4 elements. Their
number is the same as for structure S,. Structure S; (oper-
able elements 138467) occurs at the loss of two elements
(25), and S, (248357) occurs at the loss of two elements:
1 and 6.

Using the data of tables 2 and 6, we shall define 7, Results
are listed in Table 7.

Table 7. Numbers r,,

|
P g gy s s L R I
11 1] 1]olo] 7] 8 | 085
2 1 |13 13 2] 235 64 |0,546875
30 1 |6l |6l |66 |139] 512 0271484
4 1 [ 253|253 | 14 | 14 | 539 | 4096 |0,131592
s| 1 [1021]1021] 30 | 30 [2107]32768]0,064301

We see that the results in tables 5 and 7 coincide. The
analysis of data of Table 7 makes it possible to determine
an interesting consistency. Relation 7, /r, expresses a con-
ditional probability that structure S,, is saved after n-tuple
NI provided the system remained operable. As it is shown
from the calculation results (Table 8), only for one type

of structure (S, and §,) a conditional probability grows at
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the increase of the number of NI, and this structure is non-
redundant having the least number of elements. Even with
n =5 for the share of structures S, and S, there are 97% of
all cases when the system ensures operability.

Table 8. Conditional probabilities

rni/ l-n

n

i=1...5 i=6,7 i=8,9
1 0,1429 0,1429 0
2 0,0286 0,3714 0,0571
3 0,0072 0,4388 0,0432
4 0,0019 0,4694 0,0260
5 0,0005 0,4846 0,0142

Under strategy 2, when the affected elements are excluded
from the field of the next NI, and equally probable affection
of the remained operable elements, the function of surviv-
ability is calculated by the formula:

I
R'(n)=).Cih icy, ®)
i=1

where / is the number of implicants in ODNF, s, is the
number of letters in the implicant, £, is the number of nega-
tions. The results of calculations are listed in Table 8. We see
that the function of survivability is falling much faster that in
the scheme of independent NI (under a “passive strategy”).
The average number of NI before affection w = 2,547. It
is less that under strategy 1.

In general we can speak about the existence of a vector
of numbers of operable states of the system F,(u), u=0...N,
where u is the number of the elements removed from the
system at one moment. Formula

Su) = Fu) 1 €' )

is a conditional probability that under many-fold affection
of u elements in the system of N elements, this system shall
keep operability. Then (8) is rewritten in the form

R'(n) =fin) (10)

Vector F,(u) specifies structural redundancy in the
system and its profile. And occurrence of this redundancy
in the interests of survivability is kept under aby distribution
of NI probabilities. This very redundancy equally works
on reliability as well. For instance, probability of reliable
operation of non-recoverable system with complex structure
of homogeneous elements

P() = F(0)*p(t)" + F(1)* p(*' (1 — p()) +
oo FN-D* p(o)(1 = p()™, ()

where p(7) is the probability of reliable operation of one
system element. Reliability of such system is the higher, the
higher F\(u) is. It is described in detail in [14].
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We can pass from the estimating the survivability by state
to estimating the survivability by the result of task execution.
This work was carried out in [6], where the same structures
were the basis: bridge of five elements and electric power
structure of eight elements. Estimate of survivability in this
assignment makes it possible to hybridize separate properties
of survivability and reliability, getting new complex proper-
ties of NI-reliability, NI-safety, etc. [11, 12].

Structural survivability of multipolar
technical systems

Let us consider the variants of constructing a multipolar
technical system, when the system can be expressed by a
multipolar graph, in which the nodes (without violation of
entity) are unexposed to NI, and these are only connections
in a graph, which are exposed to impacts. One of possible
criteria of non-operability of such system is the occurrence
of isolated nodes or separated sub-graphs.

An example is the communication network with the nodes
effectively protected from NI and from the line destruction.
If any node (or group of nodes) has no connection, the sys-
tem will lose a critical source of information or a function
of control. In practice, it will fall into several subsystems,
each of which will start to function independently; and this
event is accepted as a fact of loss of survivability.

With no violation of entity let us assume that the branches
of the graph of a multipolar system break out one after
another, i.e. they are excluded from the field of affection
of new NI. Then our task is to form a vector of the system
redundancy F,(), and then to use formulas (9) — (10) to
estimate its probability of survival with » of single NI.

Let us consider two multipolar systems, sequentially in
four and five nodes (Fig. 4), in two configurations — non-
redundant, when the nodes are closed into a circle, and
full-redundant, when the nodes are connected under the
principle “each with each one”.

N=4 N=6

4 nodes

N=5 N=10

5 nodes

Fig. 4. Different configurations of multipolar systems

Four-polar network, non-redundant system (IN=4).
It is easy to see that the first NI under the active strategy
does not put the system out of operation (the same is valid
for the structures with more poles). At the same time, any
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second NI automatically makes the system non-operable.
Therefore:

R(n)=1withn<1and R(n) =0 with n > 2.

And the function of survivability becomes threshold, and
it means there is no survivability at all, and it is determined
by its non-redundancy.

Four-polar network, full-redundant system (/N=6).
Here we can see that the system of N=6 connections keeps
its operability under any double NI (in all cases the system
keeps connectivity). And there are even four scenarios of
the system survival under 3-time impact (from 20 possible
scenarios). Therefore, the results of estimation of the surviv-

Table 10. Function of survivability for a full-redun-
dant system on S nodes

n F,\(n) (o R'(n)=f(n)
0 1 1 1,0

1 10 10 1,0

2 45 45 1,0

3 120 120 1,0

4 205 210 0,976

5 222 252 0,881

6 5 210 0,024

>7 0 0

ability function are listed in Table 9.

Table 9. Function of survivability for a full-redun-

dant system on 4 nodes

n F(n) C R'(n)=f(n)
0 1 1 1
1 6 6 1
2 15 15 1
3 4 20 0,2
>4 0 0

Here the element of a smooth degradation occurs, but
nevertheless it leaves much to be desired. Smoothness
occurs when additional branches occur (for instance, chan-
nels based on another principle of coding and transfer of
informationn) alongside with main branches in a graph of
multipolar system. Roughly, when digital communication
fails there is the possibility of using classical radio com-
munication.

Five-polar network, non-redundant system (/N=5).
Similarly to non-redundant four-polar network we see
that the first NI under the active strategy does not put
the system out of operation, and each second one does.
Thus, again we deal with a threshold function of sur-
vivability:

R(n)=1withn <1 and R(n) = 0 with n > 2.

Five-polar network, full-redundant system (N=10).
System keeps its operability under a three time NI of any
direction. With » = 4 the first scenarios of degradation oc-
cur (it becomes possible to isolate one of five nodes). With
n =7 and more the system will fail for sure. Therefore, the
results of estimation of the function of survivability are
listed in Table 10.

Here we really have a slow degradation of survivability.
And the more N is, the smoother this degradation is realized
with the increase of n.

Similar results can be obtained if to make NI HB r-tuple
and assign the branches in a graph with the resistance level
L (analog of the system of channel redundancy). In this case
we should use the formula from [8]. But it will not change the
basic principle: the higher is the redundancy level measured
by vector F, the higher is the level of system survivability
in respect to NI of wide spectrum.

Functional survivability and principles
of analysis

A qualitative leap from structural survivability to the
functional one is made as a consequence of substitution of
a binary function of operability in the tasks of structural
survivability by the level of tolerable loss of efficiency. Let
the system be specified by a basic property which defines
its performance (for example: in electric power systems this
property is available power, in gas systems it is the capac-
ity of a gas pipeline system). Then we can fix the level €,
in percentage of a maximum value of emergence, when we
say that if the system efficiency becomes lower than € in
percentage as the result of NI, it means that the system lost
its survivability.

Therefore, functional survivability is the ability of the
system to keep its emergence at the level not lower than ¢
of the maximum value under NI, or to restore the required
level quickly after NI. For instance, in the theory of civil
defense there is a principle of technological reserved quota
£€=30%, when non-core consumers are de-energized, and all
the energy is brought for domestic needs of people. There is
also the level of emergency reserved quota e=10%, when not
all citizens get electric power, but only separate important
centers of consumption (hospitals, maternities, etc.). And a
scientific mission of estimating and assuring of functional
survivability is to distribute SA and allowable redundancy,
to set the algorithms of system configuration in the way
which will make it possible to minimize the probability of
technological and emergency reserved quotas in cases of NI
of wide spectrum. A more detailed description of e-criterion
is given in papers [9, 13, 15— 17].

When NI is point, we are in a discrete space of NI
states. There is no such space if we estimate the variants
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of areal affection, when there is NI of continuum spec-
trum. Likewise, passing from structural survivability to
the functional one, we lose a discrete space of the system
states, it becomes continuous and uncountable. Instead of a
logical function of operability we deal with the algorithm
of assurance of survivability under NI. This algorithm is
a kind of a black box having a NI model at the entry, and
a resulting effect at the exit. If the entry is a continuum
spectrum of impacts, the exit is a continuum spectrum of
resulting.

The first that comes to mind in this case is trying to
simplify the task, to substitute a continuous space of states
by a discrete one. For instance, in [17] we note that a single
NI takes a certain quantum of allowable capacity form the
system, and the task of a large electric power system is to
redistribute the loading and make up the occurred deficit.
With the increasing NI, the system starts degradation, its
reserves of allowable capacity become exhausted, and one
day we will occur at the level of technological reserved
quota; and it is necessary to estimate the probability of such
negative scenario.

Having begun to deal with the task we discovered that
we can substitute a continuous space of states by a discrete
one, fixing the certain level ¢ in the analysis. Actually,
g-criterion is similar to the fixed frequency we scan the
system at, specifying a complete set of its operable states.
Making the enumeration of states space intent (for instance,
using the branch and bound method), may significantly
reduce the scope of operations; and NP-completeness of
the task is still here.

Then we can rewrite formulas (9) and (10) as follows:

R'(n, &)= fln) = F\(n, &)/ C,", (12)

where F\(n, €) is the number of operable states of the
system of N elements, exposed to n-tuple point NI, on the
assumption that the survivability of such system is described
by e-criterion. Besides we can easily pass from an active
strategy of NI to a passive strategy — it will not change
the analysis principle significantly. The main thing is to
estimate the level of functional redundancy, which does
not depend on the applicable strategy of NI, as it is being
formed in the space of discrete system states specified in
an algorithmic way. And then the function of survivability
can be estimated with consideration of the strategy, based
on the formed vector F.

Beautiful formulas represented for the case of equally
probable NI crash totally, when it comes to preferring one NI
to the other. In this case we have to go back to the model by
Gorshkov [18] which used to be very popular, with assigning
of axiological probabilities of point NI affecting separate
elements by the Firshburn’s principle [19], [20, p. 83-84],
building the systems of preferring of one NI to the other.
By applying the Gorshkov’s formula we estimate the func-
tion of survivability at a certain hold point. Varying the NI
probabilities in narrow scope, we estimate the dimensions of
optimality subset in a multidimensional field of probabilistic
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scenarios, when out SA decisions are the best ones. Thus,
we test our decisions related to the survivability assurance,
for parametric stability [13]. Indeed, e-criterion may serve
as one of the parameters at the verification of the decision
for optimality.

Passing from structural survivability to functional sur-
vivability cpasy takes us out from the area of traditional
approaches to the analysis, making it possible to estimate
not only technical survivability, but also system resilience,
in a wide range of classes and purposes of these systems.
Thus we gradually move to the area of mobilization eco-
nomic resilience.

Connection between technical
survivability and mobilization
economic resilience

Economic unit is a strongly connected system intended to
generate a complex economic effect and covered by the loops
of positive and negative feedbacks [20]. Different shocks
serve as NI in relation to such objects. These shocks affect
the system from the side of the unit’s environment. Under
NI a unit starts to degrade down to the level distinguished
as negative, when it is referred to a failure of achievement
of strategic aims, either by the level, or by the time of
achievement. A control supersystem generates decisions
aimed at the survival of the economic unit and at the keep-
ing of resilience in negative environment. Such decisions
are tainted by mobilization.

There is an apparent similarity between technical sur-
vivability and economic resilience, and this similarity is
observed within the frameworks of the general theory of
cybernetic systems developed starting from Ludwig von
Bertalanfty and his group [21]. Watching the survivability
and resilience from systemic positions, we come to the idea
of vitality as a basic prototype property of survivability in
a general sense, which generates its projections in systems
of different types. The idea of Bertalanfty was that all liv-
ing systems (or systems pretending to be viable) had the
property of equifinality, when a system inevitable comes to
its final state, in different ways, from different initial states.
Actually, equifinality is a dynamic resilience, realized in
the course of pursuing the achievement by the system of
its final aims, its base purpose — to serve, deliver a current,
protect, supply. Survivability is inherited from equifinality
to the same extent as from vitality; the system is vital if it
is equifinal, and vice versa.

The obtained isomorphism of technical survivability
and economic resilience leaves a wide room for a mutual
migration of methods, models and approaches from one
type of application to other types. For example, mobiliza-
tion resilience copies the principle of NI e-criterion from
functional survivability, in the terms of continuous spaces
of NI and system states. Balanced score card serves as
the function operability and functional algorithm in the
economic system. In reverse, technical survivability may
get improved if it loses itself in the economic context,
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when the analysis of efficiency is supported by an ex-
panded analysis of economic and financial sufficiency
of technical decisions for survivability. When it a tech-
nical system turns out to have a control supersystem,
and a supersystem turns out to have economic context
and strategic goals which are introduced to the control
supersystem of the respective technical system as basic
criteria of performance.

Final purpose of equipment is to serve economic and
social systems in standard conditions and under NI, as
well. In all cases this service should be developed in
stipulated to the extent set forth in advance, with clear
expectations, in coordination with the objectives of su-
persystems.

Conclusion of part 2

The theory of technical survivability shall be developed
in the following main directions:

Understanding technical survivability as a general scien-
tific discipline that crosses industrial boundaries. Such vision
will be developed when survivability will be observed from
systemic cybernetic positions, as a projection of vitality;

Analysis of the experience gained as the result of re-
searches of survivability and resilience carried out in the
West. Understanding of how western approaches can be
applied in Rissia, why “yes” and why “no”;

Substitution of probabilistic models of survivability by
inexplicitly scenary models which do not need any axiologic
hypotheses, but simulate expert experience in the terms
of impacts and reactions, with consideration of essential
information uncertainty. Logic of system performance in
these conditions may also be “soft”, it may be estimated
with soft computations and measurements in the sense of
Zadeh — Dubois — Prada [22, 23];

Passing from the function of survivability to a risk-
function. It is necessary to estimate not the survival rate,
but risk of failure to achieve a goal;

A more detailed attention to humanitarian aspects of
survivability, to a human factor in survivability control. It
is necessary to study not only the technical system, but its
SA as well;

Development of a conceptual horizontal between techni-
cal survivability and resilience. Implementation of economic
and financial measures in the tasks of technical survivability.
The task of survivability assurance should be considered
from the standpoint of investment project development.
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