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Estimation of quality of a small sampling biometric data 
using a more efficient form of the chi-square test
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Abstract. Aim. The purpose is to increase the power of the Pearson’s chi-square test so that 
this test will become efficient on small test samplings. . It is necessary to reduce the scope of 
a test sample from 200 examples to 20 examples while maintaining the probability of errors 
of the first and the second kind. Selection of 20 examples of biometric images is considered 
by users to be a comfortable level of effort. The need to select more examples is perceived 
by users negatively.
Methods. The article offers one more (the second) form of the Pearson test that is much 
less sensitive to the scope of data in a test sampling. It is shown that a traditional form of the 
chi-square test is more sensitive to the scope of a test sampling than the Cramer-von Mises 
test. The offered (second) form of the chi-square test is less sensitive to the scope of a test 
sampling than a classical form of the chi-square test and less sensitive than the Cramer-von 
Mises test as well. This effect is achieved by the transition from the space of frequency of 
occurrence of events and probabilities of a group of similar events occurring in the space of 
more accurately evaluated junior statistical moments (mean and standard deviation). The frac-
tal dimension of the new synthetic form of chi-square test coincides with the fractal dimension 
of the classical form of the chi-square test. Results. The offered second variant of the chi-
square test is presumably one of the most powerful of all existing statistical tests. The analytical 
description of correlation of standard deviations of a classical form of the chi-square test and 
a new form of the chi-square test is given. The standard deviation of the second form of the 
chi-square test decreases by half on retention of a statistical expectation on samplings of the 
same scope. The latter is equivalent to a four-time reduction of the requirements to the scope 
of a test sampling within the interval from 16 to 20 examples. Power gain as the result of the 
application of a new test is growing with the growth of a test sampling scope. Conclusions. 
When creating a classical chi-square test in 1900, Pearson was guided by limited computing 
opportunities of the existing computer facilities, and he had to rely on the analytical relations 
that he found. Today the situation has changed and there are no more restrictions in relation 
to the engaged computing resources. However we continue to rely on those created with com-
puting resources of 1900 by inertia. Probably, we should try to consider modern opportunities 
of computer facilities and to build more powerful options of statistical tests. Even if new tests 
will require a search of large number of possible states (they will have big tables calculated 
in advance instead of analytical relations), it is not a constraining factor today. When data is 
insufficient (in biometrics, in medicine, in economy) a computing complexity of statistical tests 
does not play a special role if the result of estimations is more accurate.
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Introduction

An information-oriented society requires active use of 
Internet resources. State and private organizations create 
personal user accounts on their web-sites. Unfortunately, 
the current practice of password security of the access 
to personal user accounts is quite vulnerable. Users are 
not able to remember long randomly chosen passwords. 
An owner of an information resource cannot be sure 
that it will be exactly his host who will get access to the 
personal account. A password may be intercepted by a 

backdoor. Besides it is quite easy to spoof an IP address 
of an Internet-user.

To protect the access to user accounts, the technologies 
of personal biometric authentication are currently being 
developed by means of transformation of personal biomet-
ric data into a cryptographic key of a person, or into a long 
randomly chosen password. The following biometric images 
are used: an image of finger mark [1], an image of eye iris 
[2], voice password [3], hand-written password [4], an image 
of blood vessels of an eye ground or a palm [5]. Naturally, 
biometrics-code transformers cannot be ideal, they have 
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the probabilities of errors of the first and the second kind. 
It becomes necessary to test the errors of the first and the 
second kind on real biometric data. Moreover, when setting 
the “indistinct extractors” [1, 2, 3] and training the neural 
network transformers [4, 5] it is necessary to control the ab-
sence of gross errors in biometric data. Basically, on a small 
number of examples of a biometric image it is necessary to 
control the indicator of relationship of the biometric data 
distribution to the multivariate normal law [6]. Formally, 
for this purpose we can use a simple univariate Pearson 
chi-square test [7, 8], but such approach is far from the best 
one. In this article we will try to show that a classic form of 
the Pearson chi-square test is by far not the only one, i.e. it 
is possible to set the task on searching of the most effective 
Pearson’s functionalities, considering different peculiarities 
of their practical application.

Occurrence of quantization noise 
at the statistical processing of small 
samplings 

Let us consider the simplest situation, when a test or a 
learning sampling is represented by 9 examples of the “Self” 
image. Since a continuous function of probability P(x) of 
the first biometric parameter v1 is a small sampling function, 
we have to describe it by a step monotonously increasing 
function , as it is shown on the left part of Figure 1.

To construct a step monotonously increasing approxi-
mation , it is necessary to sort biometric data in its 
ascending order:

 xi = sort(v1,i) for i = 0, 1, 2, …, n, (1)

where n is a dimension of a test sampling, or a number 
of quanta of approximation of a monotone function of 
probability.

In this case a monotonously increasing step function 
will be described by the following piecewise constant ap-
proximation:

 
. (2)

An approximation error or a quantization noise is found 
as a difference of a continuous probability function and its 
step approximation:

 . (3)

The lower part of Figure 1 shows the functions of the 
quantization error or quantization noise caused by small 
test samplings.

In the context of mentioned above, the Kolmogorov-
Smirnov test [7] should be considered as a search of the 
maximum value of the module of approximation error:

 
 (4)

or a choice of the biggest from local maximums of the 
quantization noise.

From the same perspective, the Cramer-von Mises test [7] 
is the estimation of standard deviation of the quantization 
noise of the continuous probability function:

 (5)

if the condition of a zero statistical expectation of a 
quantization noise is fulfilled E(∆P(x))=0.

It should be emphasized that the Kolmogorov-Smirnov test 
(4) always has a lower power in comparison to the Cramer-von 
Mises test (5). The Kolmogorov-Smirnov test (4) is a point 
test, and the Cramer-von Mises test (5) is integral. 

It is evident that with the increase of n of a test sampling, 
both these statistical tests are getting power of estimations, 
however, the estimation by an integral test is always more 
reliable than the point estimation. 

Classic variant of the Pearson  
chi-square test 

General practice of check of statistical hypotheses in 
most sectors of industry is reduced to the construction of 

Fig. 1. Effects of quantization of a continuous probability of values distribution and a continuous density 
of values distribution by 9 examples that cause continuous noise of a quantization error
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histograms of the available data (right part of Figure 1) and 
to the calculation of the classic chi-square test:

 

, (6)

where ni is the number of samples, occurring in the i-th 
column of the histogram, Pi is the probability of occurrence 
in the i-th column of the histogram of the theoretical distribu-
tion, k is the number of columns of the histogram.

Wide application of chi-square test is determined by the 
fact that for this test we know the analytical description of 
distribution density: 

 

, (7)

where G(·) is a gamma-function, m is the number of 
degrees of freedom. 

The number of degrees of freedom m can be set in dif-
ferent ways [8]. For instance, it can be defined through the 
scope n of a test sampling:

 ,  (8)

if the number k of the histogram columns is chosen by the 
rounding off up to the nearest integer of the value :

 
. (9)

Let us note that the value of the number k of the histo-
gram columns and the value of the number m of the degrees 
of freedom for a classic chi-square test always turns out 
to be much smaller in comparison to the scope n of a test 
sampling. So, the error of step approximation of density of 
distribution of the values  (right part of 
Figure 1) is always more than the error of approximation 
of a probability function (3). So in the left part of Figure 1 
the approximation of the probability function is constructed 

using 9 steps, whereas the function of approximation of 
probability distribution is constructed using just 4 steps in 
the right part of Figure 1. The quantization noises of the 
Cramer-von Mises test turn out to be less than the quantiza-
tion noises of the classic chi-square test (6). 

It means that the power of the Cramer-von Mises test is 
always higher than the power of the classic Pearson chi-
square test (3).

Comparison by power of the Cramer-
von Mises test with the classic  
chi-square test 

We shall proceed from the fact that biometric data for 
each of the parameters under control is distributed normally. 
Then the quality of data of one parameter can be estimated 
by both, the Cramer-von Mises test, and the chi-square test 
[7, 8]. To compare the tests let us use the data distribution 
by the uniform law as an alternative. The results of the 
numerical simulation for the samplings of 9 examples are 
shown in Figure 2. 

When making a decision, a match threshold plays an 
important role. Each match threshold gives its probability 
value P1 for the errors of the first kind and probability value 
P2 for the errors of the second kind. To exclude uncertainty 
of a match threshold, let us compare the results in the point 
with equal probability of errors P1 = P2 = PEE.

Figure 2 shows that the distribution of data received by the 
Cramer-von Mises test gives the value P1 = P2 = PEE = 0.306. 
Under the same conditions the chi-square test gives the 
value of equally probable errors P1 = P2 = PEE = 0.327. The 
results are approximately 9% worse. It means that the chi-
square test requires the sampling of 10 examples, whereas 
for the Cramer-von Mises test only 9 examples are required. 
The relief in the requirements to the dimensions of a test 
sampling is explained by the fact that the quantization er-
ror of the probability function P(x) turns out to be smaller 
than the quantization error of the distribution density p(x) 
(see Figure 1). 

Calculation procedure of the Cramer-von Mises test is 
approximately  times more effective for the suppression 

Fig. 2. Distributions of the values of the Cramer-von Mises test and chi-square test for the normal distribution law, 
and for its alternative in form of the uniform law of distribution for the samplings of 9 examples
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of quantization noises in comparison to the data calcula-
tion by the chi-square test. The more a test sampling is, the 
stronger the effect of a more intense suppression of quanti-
zation noises is. Figure 3 shows the simulation data for the 
sampling of 32 examples.

Figure 3 shows that for the sampling of 32 examples, 
the Cramer-von Mises test gives дает PEE = 0.111, which is 
43% less than the chi-square test gives: PEE = 0.196. In the 
first approximation we may expect about 40% decline of the 
scope of the test sampling if to pass form the chi-square test 
to the Cramer-von Mises test.

One more variant of the chi-square 
test making the best use of the limited 
scope of the test sampling 

Basically, both the Cramer-von Mises test and the 
Pearson chi-square test are the schemes of the suppres-
sion of quantization noises. I.e. we can try to amplify the 
property of these statistical functionalities to suppress the 
quantization noises. For example, we can use a supple-
mentary digital-data filter configured to smooth the rises 
of piecewise constant approximation of the function of 
value distribution density [9, 10]. 

One more way is to check other possible variants of the 
calculation of the chi-square test. In particular, biometrics 
has been using the so called Pearson functionalities (net-
works of Pearson functionalities [11]) for the data prelimi-
nary normalized by a standard deviation: 

 
, (12)

where E(x) is a statistical expectation of data of the test 
sampling, σ(x)≈1 is a standard deviation of the preliminary 
normalized data of the test sampling.

It should be noted that at the processing of biometric 
data, a preliminary normalizing of data is usually made 
by its standard deviation, in attempt to fulfill the condition 

σ(x)=1. However, on small samplings, this condition cannot 
be fulfilled. For instance, a relative error of the calculation 
of standard deviation on small samplings of 20 examples 
is random and can comprise up to ±30%, at the smaller 
samplings an error may be even more. To compensate nor-
malizing errors in formula (12) there occurs the term close 
to, but always different from entity. 

Let us note that the equation (12) makes the summing 
up of squared deviations by all calculations of the test 
sampling, whereas the classic chi-square test (6) sums up 
the squared deviations only by the number of histogram 
columns. As n > k, then we can expect a higher power of 
the chi-square test (12) in comparison to the similar classic 
chi-square test (6).

Comparison by power of two variants 
of the chi-square test 

The Cramer-von Mises test turns out to be more 
powerful than the classic Pearson chi-square test due to 
the fact that it presses upon the quantization noises of a 
smaller amplitude (let us compare the left and the right 
parts of Figure 1). However, for the Cramer-von Mises 
test there is no analytical description, and that is its huge 
disadvantage. That is why we shall further compare only 
the powers of two modifications of the chi-square tests 
(6) and (12).

The results of simulation modeling with 9 and 32 ex-
amples in the test sampling for the test (12) are provided 
in Figure 4.

If to compare the crossing of the distributions on the 
left graph of Figure 4 that gives PEE = 0.106, and the 
analogous crossing on the right graph of Figure 2 that 
gives PEE = 0.327, then we will get approximately a three-
time profit in power between two variants of tests (con-
fidence in the solutions based on them). With a growth 
of the scope of the test sampling, the profit of the second 
form of the chi-square test increases. If to compare the 
data of crossing of the distributions on the right graph 
of Figure 4, providing PEE = 0.007, with the data on the 

Fig. 3. Distributions of the values of the Cramer-von Mises test and chi-square test for the normal distribution law, 
and for its alternative in form of the uniform law of distribution for the samplings of 32 examples
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right graph of Figure 3, providing PEE = 0.196, then we 
will get a 28 times profit.

It turns out that both, the Cramer-von Mises test and the 
second form of the chi-square test are more powerful than 
the classic chi-square test due to the calculation of these 
two tests by the whole sampling. The classic chi-square test 
looses out to these two tests because it sums up a squared 
error by number of columns of the empirical histogram. It 
is quite easy to make sure that the Cramer-von Mises test 
is in its power within the interval between two forms of the 
chi-square tests.

Analytical description of the second 
form of the chi-square test 

The essential property of the second form of the chi-
square test is that for independent data its statistical prop-
erties are very well described by normal distribution laws. 
And the statistical expectation for the distribution of formula 
(12) with an absence of a normalizing factor 1/n is close to 
the scope of the test sampling:

 . (13)

This statement is illustrated by the positions of maximums 
of unbroken curved lines of Figure 5. I.e. the value of statisti-

cal expectation of the second form of the chi-square test is 
almost always taken (with accuracy to the correction 0.778) 
from the classic chi-square distribution with the number of 
degrees of freedom m = n (dotted curves in Figure 5).

Figure 5 shows that standard deviations of normal dis-
tribution laws are always smaller than standard deviations 
of classic Pearson chi-square tests. At statistical calcula-
tions with an engineering accuracy standard deviations are 
described by the following equation: 

 
 (14).

It should be underlined that the accuracy of approxima-
tion (14) increases with a normalizing of values distribution 
of the second form of the chi-square distributions. So for 
n = 8, 16, 32 a relative error of approximation of standard 
deviation shall be ∆σ = 3.10%, 1.70%, 0.75% , which is 
quite acceptable for an engineering practice of statistical 
processing of biometric data.

Conclusion

We are used to the fact that for reliable statistical estima-
tions the samplings with hundreds of examples are required. 
Only in the case, when we have a large sampling and rely 
on standardized recommendations [8], there is a confidence 
in the quality of the performed statistical analysis. This is 
the current technical practice.

This article showed that the power of the chi-square 
test can be essentially increased, i.e. reliable estimations 
can be obtained on much smaller data samplings. It is very 
important for practice, especially if a destructing testing of 
costly products is performed. Already existing practice of 
statistical processing of biometric data proves true of this 
important stipulation. 

Essential estimation resources are not a problem nowa-
days. We can make a statistical data processing more com-
plicated, for instance, making it multivariate [11]. Today 
we have a technical capability of multiply complicating the 
applied methods of statistical analysis. In the last century we 
used to take one test and had to be satisfied with its results, 
but today we can use dozens of well-known statistical tests 
and, if necessary, create new tests especially for a certain 
practical task. 

Fig. 4. Histograms of the values distribution of the second, more effective form of the chi-square test

Fig. 5. Distributions of values of the second form of the 
chi-square test (unbroken curved lines) for n = 8, 16, 32 
and classic chi-square distributions, when the number of 
degrees of freedom coincides with the scope of a sam-

pling (dotted curves)
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