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Abstract. Aim. Some of the main performance indicators of ACS application are the operational 
efficiency and stability of the control of the above mentioned systems. The wide application of com-
puting techniques in ACS as well as the organization of computer networks on this basis stipulate 
the necessity of effective control of distributed computation processes to ensure the required level 
of operational efficiency and stability while solving the specified tasks. The existing methods used to 
organize the computation process (method of dynamic programming, branch and bound method, 
sequential synthesis, etc.) may turn out to be bulky or less accurate in certain situations. These 
methods help to find a solution in the mode of interactive choice of an optimal variant to organize 
a computation process, i.e. consecutive approach to the required result and do not allow getting 
an a priori estimation of the time of computation process in a network. Application of the specified 
methods when solving research tasks in the course of design of computer networks presents itself 
as quite difficult. This article offers the application of a geometrical method that allows estimating 
the minimum time necessary to solve the set of information-computing tasks as well as ensuring 
their optimal assignment in a computing system. Besides, the method allows finding a full set of 
possible variants for the organization of a computation process in a network with an a priori estima-
tion of time of the decision for each variant. The principle of the method is to represent the sets 
of all possible distributions of tasks by workstations in form of a broken hypersurface. To solve the 
indicated task the criterion and conditions of the optimality of the time spent to solve information-
computing tasks have been introduced. Results and conclusions. This article describes many 
variants of realization of a computation process for homogeneous and non-homogeneous comput-
ing environments. Solution algorithm for a homogeneous computing environment is quite simple 
and makes it possible to define a minimum time necessary for a computation operations. It is 
based on a geometrical representation of the distribution of tasks by workstations in form of the 
hyperplane constructed in orthonormal space whose basis vectors are computation capacities of 
workstations. Besides, the algorithm for homogeneous computing environment can be successfully 
used for an approximate estimation of the minimum time necessary to solve a set of tasks in a 
network, for non-homogeneous computing environment as well. Minimum time necessary to solve 
functionally different tasks in a non-homogeneous computing environment is defined using a piece-
wise linear hypersurface that slightly complicates the algorithm, though in general, with considera-
tion of computation capabilities of moderns computers, it is still simply realized. The estimations 
carried out in the course of preliminary researches, allowed concluding about the application of 
a geometrical method in a computer network for a large amount of workstations and information-
computing tasks. The possibility of an a-priori estimation of the minimum time necessary to solve 
a set of tasks in the computer network allows using the offered method to solve research tasks at 
the stage of design of a computer network to estimate such indicators as operational efficiency, 
reliability, stability and etc. The possibility of an aprioristic assessment of the minimum time of the 
solution of a complex of tasks in the computer network allows to use, offered in work, a method 
in the solution of research tasks at a design stage of the computer network for an assessment of 
her such indicators as efficiency, reliability, stability, etc.
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Currently the notion “computing systems” is no longer 
the innovation. Trends of the technology development are 
largely determined by the concerns to improve the perform-
ance of the current computing systems and the systems 

under development [1, 3, 4] by deployment of technical and 
technological novelties. Capacity of the first computers, as 
well as their functional reliability were not high enough, 
that is why they did not make it possible to solve many ap-
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plication tasks, or it took much time to solve them in view 
of all recovery processes required after failures. Just after 
the first computers appeared, different methods to combine 
several computers into one system were developed to im-
prove the performance, functional reliability, and to reduce 
the time necessary to solve the tasks. The idea was simple: 
if the capacity of one computer was not enough to solve 
the tasks, then it was necessary to parallelize the whole 
set of tasks Ω among computers, and then each computer 
would solve its sub-set of the tasks Ωi ( ), where L is 
the amount of computers in a computing system (CS). The 
same aim was pursued at the development of multiproces-
sor systems or, as they say, the systems with multi-core 
processors. With the advent of technical and technological 
possibility of information exchange between computers, a 
strong impetus was given to the development of the concept 
of CS construction which is a logical result of the evolution 
of computer technologies. So the computers were able to 
exchange information, they were provided with computation 
capacity and user-friendly interface, there was a little left to 
do – to teach them to control the computation process. The 
methods of distributed computation process, such as, for 
instance, the dynamic programming, the branch and bound 
method, sequential synthesis, etc. [1, 2, 3, 4] started their 
active development. These flexible generic approaches and 
methods became widely applicable in the efficient use of 
computing resources while solving a wide range of tasks: 
information, computing, technological and many other 
tasks. However, if we consider some one type of tasks, for 
example, computing tasks when it is necessary to distribute 
a certain set of one-type tasks in a multiprocessor or in a 
multi-core processor space, the generic methods may turn 
out to be bulkier or less accurate.

This article offers a geometrical method that allows 
estimating the time necessary to solve the tasks in homo-
geneous and non-homogeneous environments as well as 
ensuring their optimal assignment in CS. For a homogeneous 
environment, all computation processes in CS are assumed 
to be linear for all types of tasks, for a non-homogeneous 
environment – the linearity is observed only for the tasks of 
the same type, and there is no linearity for the set of different-
type tasks. Linear and nonlinear relations mentioned above 
shall be described in more detail below.

Let there be a CS whose nodes are computing machines 
generally of different technical characteristics (the speed 
of a processor and a front side bus, random access memory 
capacity, etc.). The computer network nodes are automated 
workstations (WS), solving a certain set of the entered 
information-computing tasks (ICT). ICTs solved in CS 
are independent of each other from the point of view of 
the pooled input and output data. The task of distribution 
of the whole variety of ICTs to be solved in CS is laid on 
a certain control center CS (CSCS), which can perform 
the computation process in CS in automatic or automated 
mode. In case of the high level of technical facilities, and if 
CS is provided with data communication channels, a high 
end server performing automatic control of CS may serve 

as a CSCS. If the level of technical facilities is insufficient 
or low, and in case there are no required communication 
channels, total control is taken by a human, and information 
exchange is carried out by means of courier service. This 
paper describes the CSs of the high technical level with data 
communication channels of high performance. The sample 
of an unspecified CS is shown in Figure 1.

Fig. 1. Computer network. General view 

The CS architecture may be rather diverse, but the CS 
itself should have several main properties:

WS of the network have the same rights and priorities in 
relation to the ICT solution;

The whole set of tasks solved in the CS can be solved 
at any WS;

WS, at which ICTs are solved, operate in parallel;
all WSs of the CS are thoroughly reliable.
Let the CS with m of WSs take M of ICTs including n 

types of tasks, i.e.

,

where ξj is the amount of tasks of the j-th type. The types 
of tasks differ, for instance, in scope and content of input 
and output data. Let for any pair of WSs the following 
equation hold true

 
, (1)

where ti,k  is the time to solve one task of the k-th type at 
the i-th WS; tj,k is the time to solve one task of the k-th type 
at the j-th WS ( ).

Condition (1) specifies the fact that the time to solve an 
ICT at WS linearly depends only on the WS computation 
capacity, the time of bringing the initial information is not 
considered, as its scope is quite little and the times for in-
formation exchange between WSs are also negligible. For 
example, if the WS1 has a higher speed response than the 
WS2 by φ times, then for all types of tasks we can write
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Let us consider such CS as a homogeneous computing 
environment. Then the computation process should be or-
ganized in such a way, i.e. to distribute M of tasks between 
m WS of CS, so that the time to solve the whole set of tasks 
shall be optimal to some degree (optimality criteria will be 
described below).

Let us assume the whole set of ICTs being distributed 
somehow between WSs. The result of such distribution of 
the whole set of ICTs among WSs can be represented as a 
system of non-homogeneous linear equations

 

 (2)

where vi,j is the amount of the ICTs of the j-th type, dis-
tributed to the i-th WS; Ti is the total time of solution of the 
ICTs, distributed to the i-th WS.

And for system (2) the following condition should be 
satisfied

 

 (3)

Let assuming (1)

 
. (4)

Then let us rewrite system (2) as follows

 

 (5)

After the addition of all equations of system (5) as well 
as the reduction taking (3) into account we shall get 

  (6)

Let us divide the right and the left parts of equation (6) 
by the left part of the same equation 

 
 (7)

Based on (4) and (5) the following equation holds true

But

 , (8)

where  is the time время to solve total amount of ICT 
s of all types at the i-th WS.

Then after simple transformation of (7) with considera-
tion of (8) we shall get

 
. (9)

As the distribution of all M ICTs by CS WSs is un-
specified, then the variables Ti  are in general the 
variables taking the values in accordance with different 
variants of control of the computation process (loading of 
WS computation capacities with the tasks to be solved). 
Therefore, equation (9) is the expression of a hyperplane 
in segments [5, 6]:

 
. (10)

Then hyperplane (10) determines the set of points corre-
sponding to the variety of all possible distributions M of ICTs 
by m of CS WSs, and for any xi , satisfying equation 
(10), the following inequation should be followed

For descriptive reasons such plane is shown in Figure 2 
for CS with 3 WSs.

Fig. 2. Plane describing all possible distributions of ICTs 
by 3 WSs

Evidently, an arbitrary point of the hyperplane G can be 
assigned with a certain set R of possible variants of distri-
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bution of ICTs by WSs. In Figure 2 T1, T2, T3 is the time 
necessary to solve several ICTs distributed to the 1-st, 2-nd 
and 3-d WS respectively taking (3) into account.

Let us go back to the optimality criterion related to the 
time necessary to solve ICTs in the CS. Let us assume the 
time necessary to solve a set of ICTs in CS to be the time 
interval between the start of a computation process and its 
termination at all the WSs. Let us write this definition in 
form of the following mathematical equation 

 , (11)

where Ts is the total time necessary to solve ICTs in CS; Ti is 
the time necessary to solve the ICTs distributed to the i-th WS;  
m is the amount of CS WSs. Then taking (11) into account, 
the minimum time necessary to solve ICTs in CS shall be 
achieved when ∀Ti , the equation will be followed

 . (12)

Based on (10) and (12) the minimum time necessary to 
solve ICTs in CS will be

 

. (13)

Equation (13) holds true when the linearity condition 
is satisfied (1). Let us consider the case then the linearity 
condition will be satisfied within one type of ICTs, and not 
satisfied for all types of ICT. It becomes possible when the 
time necessary to solve ICT at WS includes the time of bring-
ing of the initial information, or when not only computing 
tasks are being solved, but also graphic and information 
tasks, i.e. the tasks which are essentially different.

In this case the following equation holds true 

 
, (14)

where ti,k is the time necessary to solve one task of the k-th 
type at the i-th WS; tj,k is the time necessary to solve one task of 
the k-th type at the i-th WS ( ).  
Thus we see that the linearity was observed in relation to all 
types of tasks in (1), but in (14) it found only in relation to 
one arbitrary type of tasks and not found in relation to all the 
tasks. Such CS shall be considered as a non-homogeneous 
computing environment. Let us show it on a graphical ex-
ample for two WSs with the numbers i and j.

The relations expressed by (1) and (14) are the slope 
ratio of the straight lines [7], specifying the functional de-
pendence of times Ti and Tj of the variants of distribution 
of tasks between the i-th and the j-th WSs, for instance, in 
Figure 2 it is a segment, connecting the points   with 

. Then let us write (14) as follows

,

Table 1. Results of calculation of optimal parameters of reliability of the elements ensuring reliability  
of the system and initial data for the determination of allowable errors in calculation of derivatives.

No. 
of element

T = 2000 T = 3000 T = 4000 T = 5000
P = 0,9 P = 0,95 P = 0,99 P = 0,9 P = 0,95 P = 0,99 P = 0,9 P = 0,95 P = 0,99 P = 0,9 P = 0,95 P = 0,99

1 1,29 1,7 3,18 1,86 2,51 4,82 2,44 3,32 6,33 3,03 4,14 7,97
2 1,29 1,7 3,18 1,86 2,51 4,82 2,44 3,32 6,33 3,03 4,14 7,97
3 1,42 1,98 3,84 2,2 3,03 5,88 3 4,09 7,74 3,81 5,15 9,77
4 1,39 1,89 3,59 2,08 2,84 5,46 2,77 3,79 7,18 3,47 4,73 9,05
5 1,25 1,62 3 1,74 2,33 4,52 2,24 3,06 5,92 2,75 3,79 7,45
6 1,76 2,57 5,47 2,75 3,93 8,35 3,73 5,27 10,95 4,72 6,63 13,82
7 1,61 2,32 4,95 2,4 3,43 7,51 3,16 4,53 9,81 3,9 5,63 12,35

Тav 1,43 1,97 3,89 2,13 2,94 5,91 2,83 3,91 7,75 3,53 4,89 9,77
Maximum deviation of parameter from an optimal value, %

Σn= 30 % 4,6 3,3 4,3 4,1 4,9 1,1 4,6 4,9 4,3 5,0 4,2 3,4
Σn= 50 % 10,1 10,4 9,3 12,5 13,9 6,6 3,9 8,2 7,7 12 10,5 5,4

Minimum values of components of the vector of derivatives μk (*10-3)
μk min 3,8 1,86 0,31 3,35 1,52 0,2 3,84 1,27 0,15 2,63 0,97 0,12

Fig. 3. Graph of change of the time necessary to solve 
ICTs distributed between the i-th and the j-th WSs de-

pending on sequence of the task transfer 
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where αk is a slope of the k-th straight line to the axis xj. 
Let the control of the computation process in the network 
be such, so that all M of tasks of m types are assigned to 
the i-th WS, after which they are transferred in a certain 
sequence to the j-th WS. Then the dependence of time 
necessary to solve the whole set of tasks distributed be-
tween the i-th and the j-th WSs shall be represented by a 
broken line that connects the points  and , and the 
form of this broken line will depend on the sequence in 
which the tasks will be transferred from the i-th WS to 
the j-th WS. Geometric interpretation of the latter thesis 
is shown in Figure 3.

It is clear that the amount of variants for the distribution 
of ICTs between WSs (amount of broken lines) shall be 
equal to the number of shifts of the total amount of tasks, 
i.e. M! that will be inside the area F2 (Figure 3) (“2” in F2 
is the area dimensions). Broken lines L1 and LM! (Fig.3) are 
the lower and the upper bounds of the area F2, i.e.

, (15)

where  and 

 are the broken 

lines consisting of the variety of segments , for which 
the following inequations hold true 

,

where tgαj is a slope ratio of the straight line, on which 
the segment lj lies.

We can see from Figure 3 that for any  
there is a point τi, which shall fulfill condition (12), but it 
is evident that 

 . (16)

Therefore inf{F2} will determine the sequence of 
ICTs transfer between two WSs, under which the condi-
tion (16) will be valid. Let us consider the algorithm of 
evaluation of Tmin in accordance with criterion (12) for 
inf{F2}, as it is this broken line that will set an optimal 
in sense of criterion (12) and condition (16) functional 
dependence of change of the time necessary to solve ICTs 
at their distribution between WSi and WSj. Without loss 
of generality let us consider the numbers of the tasks’ 
types corresponding to the segments lj, to correspond to 
the numbers αj in definition (15).

Let all the ICTs entering the system be allocated at the 
WSi, then the time necessary to solve them shall be . Let 
us start to transfer the ICT of the 1st type from the WSi to 
the WSj. Then the dependence of change of the time neces-

sary to solve ICTs at the redistribution between WSs will 
be expressed by the segments l1, lying on the straight line 
represented by the equation 

,

where a = tgα; α is a slope of the straight line in relation 
to the coordinate axis; b is an absolute term, whose value 
depends on the values of the coordinates of the points xi and 
xj on the plane crossed by a straight line.

For the segment l1 a=tgα1 and 
, xj = 0, then for l1 the following equation holds 

true (see Figure 3)

where  is the time necessary to solve all tasks of the j-th 
type at the WSi. Then for an arbitrary segment lk∈inf{F2} 
it is not difficult to form a straight line for which a=tgαk, 

 and , we 
shall have the following expression of the straight line 

where ( ) is a total time necessary to 
solve the tasks from the 1-st to the (k–1)-th type at the WSj 
(with k=1 ); ( ) is a 
total time necessary to solve all the tasks from the k-th to 
the n-th type at the WSi.

According to criterion (12) for each straight line fk(xi) 
let us find the point  , which is a crossing of the 
straight line fk(xi) and the straight line xj=xi

.

Further on for all values of   it is necessary to 
choose the maximum values corresponding to Tmin, i.e.

 . (17)

Figure 3 shows that for two WSs, the equation Tmin di-
vides the whole set of tasks into two subsets. The first subset 
are the tasks to be solved at the WSi, the second subset 
includes the tasks to be solved at the WSj. By analogy with 
the computation process at two WSs, the task of estimation 
of the value Tmin for m WS is reduced to the construction 
of inf{Fm}, which shall be a piecewise linear hypersufrace. 
Analytically, as in the case of (10), it is difficult to represent 
this hypersurface, that is why it is offered to used a geo-
metrical method to construct it.

Let us consider the algorithm of inf{Fm} on the example 
for m=3 and n=4. Let us assume all ICTs to be distributed 
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Fig. 5. Fragment of the piecewise linear surface Q

Fig. 4. Piecewise linear surface Q describing the variety of possible variants for the distribution of ICTs between three WSs 
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to the WS1. Then the time necessary to solve all the ICTs 
at the WS1 shall be equal to . There is a potential to 
transfer the ICTs from the WS1 to the WS2 and WS3, and 
the dependence of the change of the solution time whole 
transferring the ICTs from the WS1 to the WS2 will cor-
respond to , and while transferring the tasks from 
the WS1 to the WS3 – . In general the sequences 
of ICT transfer that determine  and , may 
be different. Without loss of generality let us accept that 
the sequences of ICT transfer that determine  and 

, are such as it is shown in Figure 4.
Let us transfer the ICTs of the 1st type from the WS1 

to the WS2 in accordance with the sequence defined by 
.

Then the dependence of the change of time necessary to 
solve the ICTs of the 1st type, distributed between WS1 and 
WS2, will be expressed by a linear function x2(x1)=l1, where l1 
is the segment 1 in the plane x1x2, connecting the points , 
  (Figure 4), i.e. we can write that 

.

As the result there will be the ICTs of the 2nd, 4th and 3rd 
types left, allocated in the sequence that fulfills condition 
(15) and specifies  (Figure 4).

It is evident that  is a trace of the piecewise lin-
ear surface Q by the plane x2=0 and , ,  

 are traces of the piecewise linear surface 
Q  by the planes ,   and 

 respectively, parallel to the plane 
x2=0 (Figure 4). Figure 4 shows that the surface Q between 
the traces, for instance between  and , are 
the intercrossing planes formed by parallel or by crossing 
segments (coplanar vectors). By the example of the plane 
ABC, lying between  and  (Figure 5), let 
us consider the construction of an arbitrary plane forming a 
piecewise linear surface Q.

We know [5, 6], that in orthonormal space the plane is 
definitely set by a normal vector  and by the point lying 
on the plane. In our case let us choose the point A, refer-
ring to the plane, with the coordinates  
(Figure 5).

Let us consider three vectors , whose coordinates 
coincide with the points A,B,C respectively (Figure 5). As 
the indicated points are on the plane, any linear combination 

 will represent the set of coplanar vectors [5, 6], i.e.

.

The normal to the plane is known to be the result of a 
vector product of a pair of coplanar vectors [5, 6], therefore, 
we can write 

 , (18)

where  is a vector product of the vectors  
and .

Let x1, x2, x3 be an orthonormal basis of the vector 
space, then let us rewrite the expression (18) in a coor-
dinate form.

Therefore, normal vector to the plane surface ABC shall 
be as follows

.

Canonical expression of the plane in the space with 
an orthonormal basis x1, x2, x3, going through the point 

 and having the normal vector  
is as follows

.

Then the expression of the plane ABC with the normal 
vector  passing through the point 

 will be as follows

Similar way is used to construct the rest planes forming 
a piecewise linear surface Q. Then for each plane of the 
surface Q in accordance with the criterion (12) we shall 
find the point of crossing of the plane with a straight line 
x1=x2=x3. The amount of planes forming the surface Q can 
be found using equation [7]

,

where L is the amount of the planes forming the surface 
Q; n is the amount of types of ICTs distributed between 
WSs. Let us denote the point of crossing of the straight line 
x1=x2=x3 with the k-th plane τk. Then by analogy with (17)

,

where  is the value of minimum time necessary to 
solve ICTs provided all ICTs are potentially allocated at 
the WS1. The value  was obtained provided that the 
distribution of ICTs between WSs started with the WS1, 
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i.e. all ICTs were virtually allocated at the WS1 and then 
distributed between the WS2 or WS3. If to form the surface 
Q provided that the distribution of ICTs starts with the WS2 
of the WS3, we will have the values  and , for which 
the following inequation will generally be fulfilled 

 . (19)

It is evident that for a complete solution of the task 
it is necessary to choose the minimum value from the 
obtained values (19). I.e., for m WS we will have a 
minimax task

 
. (20)

Therefore, having obtained (20) Tmin, which is the 
point of an absolute minimum of the task, through the 
coordinates of this point T1=T2=…=Tm corresponding to 
the axes x1, x2, …, xm, we will get the best (in terms of the 
criterion (12) variant of the organization of a computation 
process in CS. 
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