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Functional safety. The theory and practice

Jens Braband1, Hendrik Schebe2

ASSESSMENT OF NATIONAL REFERENCE VALUES FOR 
RAILWAY SAFETY A STATISTICAL TREATMENT

We discuss the decision procedure used in the Commission Decision [1] for national reference values 
(NRV). According to the safety directive, every year seven safety indicators have to be computed for every 
member state. In the decision a fixed procedure has been presented for computing the safety indicators 
and to assess whether there is a possible deterioration in safety. In the safety assessment, the decision 
depends on a weighted sum in place of an arithmetic mean.
It is then of interest how such a decision procedure would behave and what would be the advantages and 
disadvantages of the particular method. In this paper, we study a slightly simplified version of the procedure 
by two means. First, we analyse the weighted sum and derives its characteristic as efficiency. Moreover, we 
compare it via a spread with an ordinary sample mean. We support the theoretical results with the help of a 
simple simulation study in order to estimate failure probabilities of the first and second kinds. In particular, 
we construct bad alternative distributions which the decision procedure cannot distinguish.
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1. Introduction

In the Commission Decision [1], a set of so-called NRV (national reference values) for each member 
state of the EU is estimated from accident data for several years. The accident data is measured in FWSIs 
(fatalities and weighted serious injuries) for different categories of persons: passengers, employees, 
level-crossing users, others, unauthorized persons, society as a whole. The choice of measures as the 
passenger FWSI is motivated by the fact that individual accidents have a relatively high frequency and 
low consequences compared with rare but potentially very high consequence accidents, such as high 
speed train collisions. However, for the purpose of this paper, we do not consider a particular NRV but 
concentrate on the generic approach and its properties. These NRV are then set as targets for the following 
years. In each year for each state and each NRV there the following hypothesis has to be assessed: “H0: Is 
there evidence that the safety performance of the member state with respect to NRV has deteriorated?”

This hypothesis as such is well-known for problems of quality control. There, parameters as e.g. lengths, 
widths etc. are monitored. A sampling technique is applied to judge whether the process produces items that 
are out of specification. For this sake, a normal distribution with mean value μ and a spread σ is supposed 
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to exist for the parameter to be monitored. Then, limits are computed and if a certain number of items 
are outside the limits, the process is assumed to be out of control. Details can be found in many books 
on statistical quality control, as e.g. [5]. In order to monitor the process, quality control charts are used, 
where the measurement values are registered together with a running number or the time, the measurement 
was carried out. Then, on the control charts the warning limits and the action limits are drawn according 
to the rules applied. Later on, these control charts have been refined and computerized.

So, the problem treated by the ERA (European Railway agency) in its directive [1] is similar to that of 
the well-known control charts.

However, the algorithm proposed by the ERA [1] is new and has never been analysed from a statistical 
point of view. This is subject of the present paper.

In section two we will describe the approach used by the ERA to monitor their indicators. In the third 
section we will provide a theoretical analysis of the main step of the decision procedure of the ERA. 
This will then be supported by a Monte-Carlo simulation of the rule in section four. The last section is 
dedicated to conclusions.

2. The Approach Used by the ERA

The ERA wishes to test the H0:hypothesis:
‘The safety performance of the member state has not deteriorated with respect to the NRV”
by use of a procedure, which is in fact a complex statistical test consisting of several steps. We first 

give a generic definition of the problem we want to discuss in this paper:
Let the yearly values be denoted by Xi. Then, a particular moving weighted average (MWA) can be 

defined as a weighted sum:
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The weights are defined in the following manner:
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as the arithmetic mean. The value ε has been set to a value of 0.01 in [1], probably based on a heuristic 
argument. Note that ERA calculates the MWA only based on the five most recent years, which we designate 
MWAn,,n-4 here. Then, we can express the multi-step decision rule which has in fact become law as a EU 
regulation in the following algorithm:
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Algorithm
IF NRV≥Xn OR NRV≥ MWAn,n-4, THEN ACCEPT H0 ELSE.
IF NRVx1.2 ≥ MWAn,n-4, THEN ACCEPT H0 ELSE.
IF “First deviation (in steps 1 or 2) in the last three years”, THEN ACCEPT H0ELSE.
IF “Number of significant accidents not increased”, then ACCEPT H0ELSE.
REJECT the hypothesis that safety performance has not deteriorated.
This algorithm has been generated directly from the description given in [1]. A justification for this 

algorithm is not provided in [1]. Therefore, we will give explanations on how the algorithm works from 
a statistical point of view. In this paper, we are particularly interested in the failure probabilities of the 
first and second kinds, namely that H0 is rejected in case it holds true and that H0 is accepted while being 
false. We denote the coinciding failures by α and β as the probability of error of first and second kind, 
respectively.

We start with some simple observations that we have made when analysing the algorithm consisting 
of steps 1-5:

Step 1 yields a more or less random result with a probability of acceptance in the order of 0.25 to 0.5 
under reasonable assumptions; so, it is not an important factor and is discarded here.

In step 2, the constant tolerance band seems completely heuristic.

Step 3 could also be uninteresting as there will be dependencies in the data of subsequent years and it 
cannot be expected to contribute much.

In step 4, ERA explicitly calls for a statistical test to be applied and assumes a Poisson distribution for 
the number of significant accidents as the null hypothesis

On the basis of the last observation, we may conclude that ERA assumes a compound Poisson process 
as the null hypothesis with Nt depicting the number of accidents until time t and S1, S2,… an independent, 
identically distributed (i.i.d.) sequence of random variables describing the severity of the accidents as we 
have studied in [6]. The accidents occur with a rate of occurrence of λ(t) at time T1, T2, etc., where i is 
the index of the accident. For each accident with index i there exists a certain „jump height“ Si, which is 
the severity. The severity is measured as the number of fatalities (or equivalent fatalities). So, for a fixed 
interval [0,t], the process Xt describes the cumulated number of fatalities and Nt describes the accumulated 
number of accidents.

This compound Poisson process can be used to derive characteristics for collective risk.
So, under the null hypothesis, the observables Xt is a random variables that can be assumed to be 

distributed as 
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With a constant accident rate λ(t) = λ.
Thus 

   and   (5)
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holds, where we assume that the moments of S1 exist. Given a sufficient number of accidents per year, 
limit theorems for the distribution of Xt may apply, e.g. central limit theorem.

In the following section, we will analyze the estimator (1) from a theoretical point of view and afterwards 
explore the complete decision process by statistical simulation.

3. Theoretical Analysis of Step 2 of the algorithm

When looking at (1) from a theoretical point of view we see that 
a) the number of observations in the sample is small, since only 5 values are used,
b) the mean (1) is a weighted mean, where the weight (2) itself is also computed from the sample,
c) the weight (2) is truncated from below, ensuring that it is bounded away from zero, where the choice 

of the truncation constant ε is somewhat arbitrary,
d) the weight (2) reduces the influence of large observations since it is proportionally to the inverse of 

the difference of the observation and the sample mean.

The form of the estimator (1) is well-known in robust statistics. It can be found in [2], Section 2.3d, as 
the so-called Tukey’s W-estimator, as introduced by Tukey [3] with weight function (2). So, the results 
from [2] can be directly used for the specific form (1) of this W-estimator. It has been shown in [2] that 
the statistical behavior of (1) is the same as that of Huber’s M-estimator with function ψ(u)=u w(u). It is 
to be recalled that Huber’s M-estimator is defined as an estimator Tn satisfying the equation
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See, for example, [2]. Now, the theory of robust estimators can simply be applied to (1) to see what its 
properties are. The two main properties are robustness and efficiency.

a) Robustness
An estimator is called robust if it is not susceptible to the presence of outliers in the sample. Outliers 

are elements of the sample that do not belong to the normal sample space which consists of identically 
distributed random variables.

Two main characteristics for the robustness of an estimator can be applied. The first is the so-called 
breakdown point. This is the fraction of outliers in the sample up to which the estimator still yields a 
consistent result. That means, although a certain fraction of data in the sample does not belong to the 
population, parameters of the population are estimated correctly. After some algebra, the breakdown 
point can be found to be at 50%. This holds for any sample size. Any observation, if it is large enough, 
is divided by its absolute difference from the sample mean. The sample mean is only influenced if more 
than half of the observations Xi are outliers. 

The second important characteristic is the influence function, introduced by Hampel. It is defined for 
a statistic value T constructed on independent, identically distributed random variables with a common 
distribution function F and for an outlier y as

 
, (7)

See [2, Section 2.1b]. By Δy, we denote a probability distribution putting mass 1 to point y. The 
influence function shows how much a single observation can influence the estimator itself. It can easily 
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be computed by letting one observation tend to infinity and seeing how the estimator changes. If y is the 
value of the outlier and m denotes the sample mean of the values Xi, it can be seen that the influence 
function of the arithmetic mean (3) is

 
.  (8)

Usually, a robust estimator is characterized by a limited influence function. It may be noted that the 
influence function of the normal sample mean is not limited and increases together with the value of the 
outlier y. That is why the sample mean is not a robust estimator of the population mean.

The estimator (1) can be expressed in the form

,

with

.

Here, and furthermore, the integrals are over the entire real axis.
For the estimator (1), we derive the influence function as

 
, (9)

with m being the mean of F, w being the weight function and β = |x-m|. Furthermore, O(1) denotes a 
term that is of order 1, compared with y when y tends to infinity.

The influence function (9) is not limited if y increases. Therefore, one single observation Xi can 
influence the estimator of the mean such that if a single observation would tend to infinity, the estimator 
of the mean would do the same. 

The conclusion from this short study is that the estimator (1) is not robust. 

b) Efficiency
In order to obtain the variance of estimator (1), simply the results of [2] are used for location-type 

estimators in Section 2.2b.The variance is given by

 

. (10)

Now, remembering ψ(u)= u w(u) with w(u) = max(εm;|u-m|), we see that

 ψ’(u) = w(u) + u w’(u) = {  (11)
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If we neglect the influence of ε which is small anyway, and simply set it to zero, we obtain

 

. (12)

We can neglect ε since it seems to be introduced to avoid division by zero and make the computation 
feasible.

Note that this value has to be divided by n to obtain the variance of an estimator constructed from a sample 
of size n. This quantity has to be compared with the variance of the simple arithmetic mean, viz.

 
 (13)

Equation (12) yields

 

 (14)

where m4 and m3 are the ordinary fourth and third moments of the distribution. Since the values X 
are sums of other random variables, a normal distribution can be assumed as a good approximation. 
Remember, that we have assumed the existence of the moments of the S values so that weak convergence 
to the normal distribution is guaranteed. The approximation, however, would only be a good one, if the 
number of events is large enough. So for small numbers of events, it will be just a rough approximation. 
Now, for a normal distribution, (14) yields

 Var(ψ;F)=(2m4 + 6m2σ2 + 3σ4)/(m+2σ)2.  (15)

Dividing (15) by (13), we arrive at

 Eff = (2+6v2+3v4)/(v2+4v3+4v4),  (16)

with v = σ/m as the coefficient of variation. Eff is the relative efficiency of the robust estimator, 
related to the normal sample mean. It may be noted that it tends to infinity as v tends to zero, i.e. the 
estimator (1) has a much larger spread than the ordinary sample mean. Even for v=1, it may be observed 
that Eff = 11/7, i.e. the variance of the robust estimator is about 57% larger than that of the ordinary 
estimator.

So, the larger the number of observations in a single year, the smaller the value of v and thus the larger 
the loss of efficiency of the estimator (1).
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Notes:
1. We have neglected the fact that estimator (1) is not an iterated estimator, i.e. the average is computed 

once for estimator (1) and computation of the estimator is not repeated with the new mean, after (1) has 
been computed for improving the estimate. However, the failure introduced is of order 1/n, where n is 
the sample size.

2. When computing the efficiency, we have replaced the sample mean by the population mean in the 
weight function, thus introducing an error of order 1/n.

3. Integrals without indication of the limits are over the entire domain of definition of the distribution 
function F.

As a conclusion of our theoretical study, we see that estimator (1) has lost efficiency, applies smaller 
weights to larger observations but is not robust. What does that mean practically? A sudden change in one 
or several years of the statistics would not influence the statistics in the same manner as for an unweighted 
estimator, e.g. the sample mean. In addition, the spread of the estimator is much larger than that of the 
ordinary sample mean. That means we would observe much more “random noise” in our MWA, i.e. there 
might be unnecessary random fluctuations in the MWA compared with the use of the sample mean. 

4. Simulation Results

A number of simulations with different models of distribution functions have been carried out to support 
the theoretical results of Section 2.

We simulate i.i.d. annual observations from a given distribution with the mean NRV to test 
the null hypothesis. We start with a normal distribution and vary the standard deviation σ. From 
some experiments, we have gained the impression that, for such a well behaved and symmetric 
distribution, not a great difference between the decisions based on the normal average (3) and 
the weighted moving average (1) was visible. So, as an upper limit for α, we can postulate the 
normal approximation 

 
)
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(
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where N is a standard normal random variable. This approximation is derived from the fact that we 
average 5 values of NRV’s according to (1) and assume a normal approximation. Our simulations confirm 
that in fact the distribution of the MWA is centered more tightly around the NRV, but the error is surprisingly 
small. This is only logic, since the MWA is built from several values of the NRV.

For a second experiment, we take the gamma distribution as a non-symmetric solution and compare 
the results of the skewness of the distributions for equal σ.

The results in table 1 show the great dependency of the failure probabilities for step 2 on σ. For small 
σ, α is virtually zero, but, for changes in the mean of less than 20%, β is close to 1, while, for larger σ, 
α is increasing and β is decreasing. Note that, the mean has been chosen to be one, so that σ is also the 
coefficient of variation.
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Table 1 Results of simulation for first kind error probability α

Experiment σ=20% σ=30% σ=50%
Normal approximation 0.013 0.068 0.19

Normal MWA 0.01 0.074 0.18
Normal steps 1 to 3 0.0043 0.032 0.08

Gamma MWA 0.029 0.084 0.15
Gamma steps 1 to 3 0.011 0.032 0.06

The range of σ values shown in table 1 can be regarded as quite representative, as a detailed evaluation 
of Swiss accident statistics has demonstrated. Unfortunately the detailed results are confidential. The 
results also show the adequacy of the normal approximation, in particular for larger values of σ. They 
also show that steps 1 and 3 when combined only contribute by a factor of between 2 and 3, indicating 
that there is a high degree of dependency. Note that we have not simulated step 4 as, for this case, α has 
been fixed by ERA to 0.05, but also with a high degree of dependency. Also, we would have had to make 
many more assumptions on the compound Poisson process.

Also other qualitative simulations have been performed to find some “bad” alternative hypothesis that 
the decision procedure can hardly distinguish. In these experiments the i.i.d. observations have been 
distorted by fixed or randomised linear trends or by periodically recurring outliers, representing large 
scale accidents. The general observation is that the decision procedure is quite slow in detecting a linear 
trend, it generally takes 4 to 5 years until the decision procedure rejects the null hypothesis, after the trend 
has become visible in the data. This effect can be explained by a combined effect from the suppression of 
outliers by the moving average in step 2 and the “one off” exception in step 3. As expected also outliers 
are suppressed quite well by the decision procedure, e. g. for low σ, say 10% of the NRV, large outliers 
are tolerated by the decision procedure occurring as often as every third year, which in practice could 
not be tolerated.

5. Conclusions

In this paper, we have discussed, both by theoretical argument and by Monte Carlo simulation, the 
decision procedure as introduced in [1]. It has turned out that the weighted sum (MWA) used in the 
procedure has more spread than the ordinary sample mean. . Note that, the maximum likelihood estimator is 
always asymptotically efficient, provided the regularity conditions are fulfilled. In our case, the maximum 
likelihood estimator is the sample mean and this is the efficient estimator. The estimator applies smaller 
weights to large observations, but is not robust. The MWA gives a good average value but loses efficiency 
compared with the sample mean. It has also turned out that, while the error probability of the first kind is 
quite small for typical parameters, the error probability of the second kind can be very high, in particular 
as large values would be discounted by small weights and therefore, trends in alternative hypotheses 
would not be detected early. 

It is also uncommon for statistical decision procedures that the sample variation is not taken into 
account in the procedure and that no target value for the error probability of the first kind has been fixed 
in the design of the procedure. 

If an estimator with limited robustness were needed, the so-called α-trimmed mean could be used. This 
estimator neglects the γ/*100% smallest and γ/*100% largest observations in a sample and computes the 
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mean only with regard to the remaining elements of the sample. Such an estimator is much simpler and 
its breakdown point (2γ) could be changed, depending on the trimming. Then, no weighting would need 
to be applied and the loss of efficiency would be much smaller than with the present estimator.
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