
92

Reports

Antonov A.V., Zharko E.F., Promyslov V.G. 

PROBLEMS OF EVALUATION OF SOFTWARE 
DEPENDABILITY AND QUALITY IN INDUSTRIAL 
AUTOMATION AND CONTROL SYSTEMS 

The article describes aspects of evaluation of quality, reliability of software regarding theoretical basis, 
methods, main tendencies and problems in this area.

Keywords: dependability, quality assurance, software, IACS.

1. Introduction

The development of automation of complex technological objects, whose malfunctions 
lead to large economic, ecological losses, threats to health or life of people, is characterized 
by a tendency of developing industrial and automation control systems (IACS) realizing much 
more complicated algorithms of data control and analysis with usage of complex software/
hardware [1]. Assurance of IACS dependability at all stages of its life cycle is based on the 
qualitative and quantitative analysis, which according to normative documentation, should be 
also conducted at all stages. The qualitative and quantitative analysis of dependability should 
consider two components of software/hardware system (SW/HW): hardware and software. 
However, the quantitative analysis of dependability for software components of SW/HW sys-
tems (programs, software (SW)), unlike the hardware, has difficulties [2]. These difficulties are 
due to differences in the causes of failure occurrence in hardware and software components 
of SW/HW. The difficulty of calculating the dependability of classical program functioning 
within the framework of Turing universal machine consists in the fact that the algorithm of its 
functioning is not stochastic. Program failure appears after imposing on the determined func-
tion, which corresponds to the program’s algorithm, stochastic process describing input data 
for it. Determinacy of algorithm for classical programs leads to the fact that at best there is a 
calculated probability of failure for the system: input data + program. Calculation of probability 
characteristics of output process, even in case of a known function, can be difficult, and at 
presence of errors during its implementation it is possible to consider such task as unfeasible. 
The problem was realized by many experts and, as there is a requirement for evaluation of 
dependability of programs applied as a part of various systems, there are models and methods 
allowing evaluation of dependability of the program [3]. 

Together with dependability, sometimes substituting it, the term “quality” of software is used. 
Quality of software can be defined as compliance to the explicitly set functional and operational 
requirements, explicitly specified development standards and implicit characteristics. Qualitative 
and quantitative indicators of quality of programs, unlike probabilistic reliability, can be used 
efficiently for analysis of types and consequences of failures, comparative analysis of variants 
of technical solutions on provision of dependability, organization of maintenance. Qualitative 
and quantitative indicators of quality of programs have a doubtless practical value.



93

PROBLEMS OF EVALUATION OF SOFTWARE DEPENDABILITY AND QUALITY 
IN INDUSTRIAL AUTOMATION AND CONTROL SYSTEMS

In the article, most frequent methods of calculation of 
software dependability are analyzed, problems with ap-
plication of these methods are shown. A review of main 
approaches to evaluation of software quality is given.

2. Causes of failures of hardware and 
software 

In GOST 27.002-89 the following causes of occurrence 
of hardware failures are highlighted: 

1. Imperfection or violation of fixed rules and (or) norms 
of development and designing (design errors);

2. Imperfection or violation of fixed process of manufac-
ture or repair carried out at a repair enterprise;

3. Violation of fixed rules and (or) operational condi-
tions;

4. Natural processes of ageing, wear, corrosion and 
fatigue at observance of all fixed rules and (or) norms of 
designing, manufacture during operation.

In a flow of hardware failures the greatest weight, as a 
rule, has failures of the 2nd and 4th type.

The program is a collection of instructions expressed in 
one of the languages and recorded on a material object of 
long-term or temporary storage. The failure of a program’s 
material object is a failure of hardware, on which the pro-
gram is executed, or an object’s failure. Program’s failure 
appears as mismatch of value on program’s output to a preset 
value. The informational contents of the program does not 
vary itself (does not fail). Therefore, for failures of programs 
the reasons of types 1, 2 and 3 are characteristic. The greatest 
share among all SW failures, as a rule, is the failures caused 
by the first reason. The key feature of failures of this type 
both for software programs (otherwise called SW errors) and 
for hardware consists in the fact that errors are brought in the 
program (hardware) accidentally, while they appear deter-
ministically at occurrence of specific events. For programs, 
the moment of failure occurrence is defined by configuration 
and value of a set of input data, level of loading of computer 
resources, informational environment of the program at a 
stage of its execution and by similar factors. 

A wide experience and theoretical basis on quantitative 
methods of analysis of hardware dependability has been 
gained. The program cannot change in time without change 
of properties of a material object by itself and its failure is 
the demonstration of errors contained in the program. The 
quantitative analysis of software failures has a number of 
problems:

• complexity of receipt of analytical expression for the 
function describing operation of the program;

• stochastic process linked to input data, level of loading 
of computer resources, informational environment can have 
complicated or unknown distribution;

• presence of software program errors has a nonlinear 
influence on type of the function describing operation of the 
program, as well as the type of this function is unknown.

The document [4] contains the classification of types of 
software program errors by their origin:

1. System errors during setting of purposes and tasks 
related to the creation of program;

2. Software programming errors in texts of programs and 
data descriptions (syntax errors); 

3. Algorithmic errors of development under a direct 
formulation of requirements to program’s functions and al-
gorithmic errors of implementation of these requirements.

The first type of errors is not specific to the software 
and is not the subject of consideration. The overwhelm-
ing majority of errors of the second type are eliminated by 
means of automatic check of programs (compilers). With 
algorithmic errors the situation is different: you can be 
convinced that the program works correctly and there are 
no algorithmic errors only in the course of program testing 
(testing allows revealing all types of errors). Due to the 
large area of check, the test coverage for any real program 
is not complete, i.e. there is always a probability that there 
are errors in the program. 

For classic software programming languages it is known 
that the number of errors depends on the volume of pro-
gram’s source code, technology of software programming, 
qualification of personnel participating in the program’s 
development and resources allocated for the testing [5]. 
These indices can be considered as constants for the closed 
development teams with the established norms of develop-
ment and testing. 

However, nonlinear link between number of program 
errors and probability of their appearance during program 
usage leads to negative results under the attempt to use 
evaluation by a number of program errors for calculation 
of probability of its failure [4]. Despite the problems with 
substantiation of applicability of probability methods of 
software reliability evaluation, a considerable amount of 
methods of quantitative evaluation of reliability of programs 
have been developed and applied. Most frequently used 
methods and problems with their application are specified 
below. 

3. Methods of analysis of reliability 
of software programs

There is a big variety of areas of usage of models from the 
point of view of modeling hardware and program failures; 
however, the greatest attention is given to models of evalu-
ation of dependability of software capable to be integrated 
into existing complex model of calculation of dependability 
of a control system. In complex model, consequences of 
types of failures of components in digital system as a whole 
for the object are considered. The main methods of analysis 
of reliability are classified according to their main objective 
in accordance with the fact, how analysis of architecture of 
the program system is carried out:

1) Ascending method (mainly directed on research of 
consequences of single failures):

a) Event tree analysis (ETA) and modifications;
b) Failure mode and effects analysis (FMEA) and modi-

fications;



PROBLEMS OF EVALUATION OF SOFTWARE DEPENDABILITY AND QUALITY 
IN INDUSTRIAL AUTOMATION AND CONTROL SYSTEMS

94

2) Descending methods (directed on research of conse-
quences of combinations of failures);

a) Failure tree analysis (FTA);
b) Markov analysis;
c) Petri net analysis;
3) Hazard and Operability study (HAZOP);
4) Statistical methods of evaluation of dependability.
These methods of analysis are applicable both for 

evaluation of characteristics of quality and for evalua-
tions of quantitative characteristics during forecasting 
of system behavior during operation. Reliability of the 
result depends on accuracy and correctness of data on 
main events. In practice, combinations of descending 
and ascending analyses are used to raise integrity of 
analysis.

In the paper [4] the main requirements to the models used 
in methods of reliability calculation are selected:

1) Model should explain both already occurred failures 
and allow to predict failures in the future;

2) Model should be based on substantial characteristics 
of modeled system;

3) Model should be based on clear and authentic sup-
positions;

4) Model should express in numerical form dependences 
between failures;

5) Model should be based on simple and easily studied 
concept;

6) Input data required for model construction should 
be accepted as authentic by a considerable part of expert 
community;

7) Model should distinguish between single and multiple 
failures;

8) Model should distinguish between failures during 
performance of function and intermediate failure;

9) Model should allow to the user obtaining of checked 
data, including probability of failure and evaluation of reli-
ability of result;

10) Model should allow analysis of failure scenarios of 
digital components in interaction with non-digital compo-
nents;

11) Model should not use momentary information on 
system’s status. 

Table 1 shows comparison of most often used methods 
for evaluation of indices of reliability from the point of 
view of their application for program components. Data for 
table 1 are taken basically from [4], wherein the subjective 
character of data is underlined.

It is possible to see that methods of calculation of reli-
ability given in Table 1 on the whole have the following 
disadvantages:

1. Incompleteness of components and their failures;
2. Absence of commonly accepted philosophical basis of 

software modeling of intensity and probability of failures 
and methods for their quantitative evaluation;

3. Weakness of evaluation of failure parameters – failure 
rates, distribution of failure modes and factors of common 
cause failure (CCF).

Doubtfulness of application of methods of reliability 
calculation for receipt of absolute values of reliability 
indices does not mean a necessity of total rejection of 
probabilistic methods of their evaluation. Methods can be 
used for analysis of types and consequences of failures 
of individual IACS components and for a system as a 
whole, as well as for analysis of its functionality. Markov 
methods and Petri nets are considered in [13] as the most 
perspective from the point of view of receipt of quantita-
tive evaluation of software reliability and consideration 
of mutual influence of software and hardware components 
of the system.

4. Evaluations of software quality: 
quality models 

Complexity of SW engineering and maintainability 
process is in many respects stipulated by special require-
ments presented to its quality. The base quality model can 
be defined as the structured set of properties, which are 
necessary for accomplishment of definite purposes [14]. 
Advantage of a base quality model consists in decomposi-
tion of such objects significant for software, as life cycle 
processes, software product, a number of characteristics/
sub-characteristics. 

SW users feel the needs in creation of the SW quality 
models necessary for quality evaluation both qualitatively 

Table 1. Comparative characteristic of methods* 

Requirement
Method 1 2 3 4 5 6 7 8 9 10 11

Continuous tree of events [6] x x x x 0 ? ? x ? ? 0
Dynamic tree of events [7] x X x x x ? ? ? x x 0

Markov models [2] x x x x 0 ? ? x x x 0
Petri nets [8] x x x x 0 ? ? ? x ? 0

Methodology of dynamic data-flow graphs [9] x x x ? x ? ? ? x x x
Dynamic tree of failures [10] x ? ? ? x ? x ? x ? x

Diagram of sequence of events [11] x x x x 0 ? ? ? x x 0
Evaluation by metrics of software [12] х ? 0 0 ? ? x x 0 0 x

* In the table we have the following designations: X – the property is covered, 0 – the property is not covered, ? – the 
coverage is doubtful.



95

PROBLEMS OF EVALUATION OF SOFTWARE DEPENDABILITY AND QUALITY 
IN INDUSTRIAL AUTOMATION AND CONTROL SYSTEMS

and quantitatively [15]. Quality models, which are available 
now, in most cases are hierarchical models on the basis of 
quality criteria and indices (metrics) linked to them. All 
quality models can be divided into three categories accord-
ing to the methods, on the basis of which they were devel-
oped. The first type includes theoretical models based on a 
hypothesis of ratios between variables of quality. Models of 
“data control” based on statistical analysis refer to the second 
type. Finally, the combined model, in which intuition of 
the researcher is used for definition of the necessary model 
type and data analysis, is used for definition of constants of 
a quality model. But all these models link interests of the 
user, i.e. system’s initial properties with internal properties, 
which are clear to developers.

SW quality is defined in the standards ISO/IEC 9126-
1:2001 and ISO/IEC 25010:2011 as any collection of its 

characteristics referred to possibility to meet stated or meant 
requirements of all interested persons.

There are distinguished concepts of internal quality 
linked to characteristics of SW itself without consideration 
of its behavior, external quality characterizing SW from 
the point of view of its behavior and SW quality during 
usage in various contexts, i.e. the quality, which is felt 
by users at concrete scenarios of SW work. For all these 
aspects of quality there are introduced metrics allowing 
their evaluation. Besides, for creation of reliable SW the 
quality of technological processes of its development 
is important. Mutual relations between these aspects of 
quality by the scheme accepted in various quality models 
are shown in Fig. 1.

Fig. 2 shows the model of evaluation of SW quality ac-
cording to ISO/IEC 9126.

Fig. 1. Main aspects of software quality according to standards ISO/IEC 9126-1:2001 and ISO/IEC 25010:2011

Fig.2. Factors and attributes of external and internal quality of software according to ISO/IEC 9126



PROBLEMS OF EVALUATION OF SOFTWARE DEPENDABILITY AND QUALITY 
IN INDUSTRIAL AUTOMATION AND CONTROL SYSTEMS

96

5. Conclusion 

The problem of evaluation of dependability (failure-free 
functioning) of the program, unlike the problem of creation 
of qualitative program, probably, has no solution in general 
case within the limits of classical Turing machine and there 
is a quantity of fundamental problems linked to the deter-
mined character of program’s functioning. The quantitative 
evaluation of reliability of systems based on software can be 
obtained only by a combination of actual data from several 
sources; however, even then there will be a considerable 
distrust to absolute digits for dependability parameters. 
Now there are no commonly agreed methods and data about 
failures for quantitative evaluation of reliability of digital 
systems. Probably, problem’s solution lays in the field of 
transition from classical universal Turing machine to its 
modification in the form of probabilistic Turing machine or 
to functional programming, which are free from the above 
limitations, permitting formal verification of the program.

References

1. Byvaikov M. E., Zharko E.F., Mengazetdinov N.E., 
Poletykin A.G., Prangishvili I.V., Promyslov V.G. Experi-
ence of designing and implementation of system of upper 
unit level of NPP IACS//Automation and telemechanics. 
2006. No. 5. p. 65-79.

2. Smith D., DeLong T., Johnson B.W. A Safety Assess-
ment Methodology for Complex Safety-Critical Hardware/
Software Systems//International Topical Meeting on Nuclear 
Plant Instrumentation, Controls, and Human-Machine Inter-
face Technologies. Washington, DC, November, 2000

3. Lipaev V.V. Dependability of software. M: SINTEG, 
1998.

4. Aldernir T., Miller D.W., Stovsky M.P., Kirschen-
baurr J., Bucci P., Fentiman A.W., Mangan L.T. Current 
State of Reliability Modeling Methodologies for Digital 
Systems and Their Acceptance Criteria for Nuclear Power 
Plant Assessments (NUREG/CR-6901).

5. Halstead M.H. Elements of Software Science. New 
York: Elsevier, 1977.

6. Devooght J., Smidts C. Probabilistic Reactor Dynam-
ics l: The theory of continuous event trees // Nuclear Science 
and Engineering. 1992. Vol. 111. No. 3. P. 229-240.

7. Acosta C., Siu N. Dynamic event trees in accident 
sequence analysis: Application to steam generator tube 
rupture // Reliab. Engng & System Safety. 1993. Vol. 41, 
No. 2. P. 135-154.

8. Goddard P.L. A Combined Analysis Approach to As-
sessing Requirements for Safety Critical Real-Time Control 
Systems // Reliability and Maintainability Symposium, 1996 
Proceedings. International Symposium on Product Quality 
and Integrity., Annual. P. 110-115.

9. Stamataletos M. et.al. Probabilistic Risk Assessment 
Procedures Guide for NASA Managers and Practitioners, 
Version 1.1, August, 2002.

10. Andrews J.D., Dugan J.B. Dependency modeling 
using failure-tree analysis // Proceedings of the 17 Inter-
national System Safety Conference, The System Safety 
Society, Unionville, Virginia, 1999. P. 67-76.

11. Matsuoka T., Kobayashi M. An analysis of a 
dynamic system by the GOFLOW methodology // Proc. 
ESREL’96/PSAM III, Crete, 1996. P. 1547-1552.

12. Smidts C., Li M. Validation of a Methodology for 
Assessing Software Quality. Report UMDRE 2002-07. 
February, 2002.

13. NEA/CSNI Recommendations on assessing digital 
system reliability in probabilistic risk assessment of nuclear 
power plants. 2009. 157 p.

14. Fitzpatrick R. Software Quality: Definitions and 
Strategic Issues. Staffordshire University, School of Com-
puting Report. 1996. 35 p.

15. Zharko E.F. Comparison of models of software 
quality: analytical approach//XII All-Russia conference on 
control problems. VSPU-2014. Moscow, June, 16-19th, 
2014: Works. M: IPU of the Russian Academy of Sciences, 
2014. p. 4585-4594.


