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ESTIMATION OF RELIABILITY INDICES 
OF A “LINEARLY AGEING” OBJECT

This paper describes methodological difficulties when dealing with practical engineering challenges of 
reliability for non-stationary (time dependent/“ageing”) objects. A special case is considered when the 
object’s failure rate is linearly growing with operation time. An average lifetime of such object is defined. 
The result expression is reduced to the formula which is accessible to be used in engineering analyses. 
A formal way of substitution of a real non-stationary “ageing” object for a virtual stationary one is proposed. 
Besides, a constant failure rate of a virtual object is taken on the basis of additional considerations, in 
particular, on the basis of the condition ensuring the equality of the “life times” of both objects. The 
formulas are developed for calculation of the failure rate for a virtual stationary object, expressed through 
the parameters of the real object’s “ageing” characteristics. The efficiency of the suggested method is 
demonstrated by means of the solved problem about final probabilities of the states of the “linearly ageing” 
object and its availability factor, deduced in analytical form.
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The reliability theory is widely used in the engineering practice to solve many important 
tasks, such as, for instance, the assignment or extension of operational life of an object (element, 
system), development of the scientifically based methods of its deployment, determination of 
inspection frequency, preventive and overhaul repairs and other measures to ensure its specified 
reliability level during operation process, etc. Successful handling of such problems requires 
the knowledge of reliability characteristics of the object, deduced in analytical form.

These are the three main reliability characteristics that are mostly used in engineering 
analyses: failure rate λ(t), time-to-failure density function f(t) and reliability function p(t) – 
probability of non-failure operation during the time period t. Generally, all these characteristics 
are the functions of time which are interrelated. This means that the knowledge of one of them 
gives the opportunity to define any of the remaining ones by the known formulas [1].

Under operational conditions these characteristics are deduced by means of acquisition and 
processing of the statistics data on the objects in operation. Generally, the most accessible is to 
reveal the function λ(t), as, for any important objects, the failures and attendant circumstances 
are normally documented by operating personnel, and the information received is available 
for further analysis. Then, the characteristics λ(t), f(t) and p(t) are known in analytical form 
and can be used to solve the research tasks and practical estimations.

The vast majority of the present engineering methods of reliability estimations is based on 
the hypothesis of stability of the flow of random events. It means that all process probabilistic 
characteristics remain unchanged with time, for instance, λ(t)=const=λ0, and it leads to the 
known exponential correlations:

f(t) = λ0 ∙ e–λ0t; p(t) = e–λ0t.
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The hypothesis of stability of reliability-related processes 
within a long-term time interval of an object’s functioning 
in many cases is quite convincing [2]. But it is actually a 
fact that as time goes by, the certain real objects obviously 
tend to the failure rate rise, i.e. they are non-stationary. In 
the reliability theory such objects are usually called ageing 
objects [1]. 

At present there are almost no admitted engineering 
methods of calculation of the ageing/deteriorating objects 
reliability indicators, although the algorithm of their deter-
mination remains the same as in case of stability. Ultimately, 
the attempts of application of this algorithm for analytical 
determination of major reliability characteristics of a non-
stationary object in two or three steps, generally, cause 
significant mathematical difficulties. These difficulties may 
appear when the noted differential equations (for instance, 
the Kolmogorov equations [1]) are not solved in quadra-
tures, or when some integrals established as the result of 
mathematical calculations are not expressed in elementary 
terms and can be defined only numerically. Consequently, it 
is almost impossible to find the required calculation formulas 
in the reference materials, or they are quite complicated and, 
in addition, are derived with simplifying assumptions.

Some practical reliability tasks basically could be solved 
with the use of numerical characteristics of a random 
variable (time to failure): one of its so called moments is 
a mean time to failure (an object’s lifetime) Т. And all the 
aboveindicated difficulties related to the determination of Т 
for a non-stationary object remain in force. There are cases, 
however, when this task can be solved completely. One of 
such cases is the situation when variation of the failure rate 
of an object becomes linear as time goes by (“linearly ageing 
object”). The solution of this task is given below. 

So let us assume that λ(t) is described by the following 
function:

 λ(t) = λ0 + at, (1)

where λ0 is an initial failure rate, a is a coefficient of an 
object’s ageing (a ≥0), t is current time. Then λ0 and a are 
considered to be known and assigned.

Let us find the reliability function of such object p(t), 
which is associated [3] with λ(t) by the correlation:

 , (2)

with consideration of (1) it results in:

 . (3)

By means of simple transformations the index of this 
constituent is developed to the form:

,

and thus (3) can be written over to:

    (4)

Let us define Т as a mean time to failure for such object. 

It is known [1, 3] that ; consequently, for the 

current case:

 . (5)

For calculation of this integral let us change the variables: 

. Then  and in consideration with 

the fact that with t = 0 , the formula (5) is de-

veloped to the form:

, (6)

where  is the probability integral, for 

calculation of which the detailed tables [4] are used. Hence, 
the task when it is necessary to find a mean lifetime of a “lin-
early ageing/deteriorating” object is solved analytically.

Determination of Т by the formula (6) is often incon-
venient, as it is associated with the necessity of calculation 
of the difference between two small close numbers to high 
precision. This difficulty can be circumvented by the fol-
lowing way. 

Let us limit further consideration by the case when 

. The failure rate λ0 within a fixed time period 

Тf of reliability assessment of an ageing/deteriorating object 
has increased by the amount of β (β>1). Then λ(t=Тf) = 
βλ0. And according to (1) it follows that βλ0 = λ0 + aТf  and 

. The statement z0>1, after it is substituted 

with these values of a, transforms into:

λ0Тf > (β–1),

i.e. the condition z0>1 means that within the fixed 
interval of reliability assessment the increase of the aver-
age number of the object’s failures due to ageing does not 
exceed the average number of failures at the initial stage 
of its functioning. Physically it means that the situation is 
being analyzed when the object’s ageing with time goes 
on relatively slow; if the object is ageing/deteriorating too 
fast, it hardly makes practical sense speaking about any of 
its long-term operation. 
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 Let us put to use that for z0>1, the following asymptotic 
decomposition is valid [4]:

,

and the error occurring when the row is limited, in ab-
solute magnitude is less than the first rejected member of 
equation, and has the same sign. If to consider only first 
two summands in the right part of this formula, then, after 
certain transformations, the formula (6) in initial notations 
shall be written as:

 

, where . (7)

According to (7), the mean lifetime of a “linearly age-
ing” object depends not only on λ0, but also on the non-
dimensional parameter λ0

2 / 2a. 
To make an obtained result more demonstrative from 

the physical point of view, let us reduce the expression (7) 
to the form:

 T = T0(1–aT0
2),  (8)

where T0=(1/λ0) is a mean lifetime of a stationary (“non-
ageing”) object with the failure rate λ0 (see (1) with a=0). The 
functional connections (8) are qualitatively shown in Fig. 1.

Fig. 1

Fig. 1 shows the reduction of the mean lifetime of a non-
stationary objects depending on the ageing factor a.

A possible use of the obtained result shall be analyzed 
by the following example.

Let us assume that an ageing object, the failure rate 
of which is expressed by the functional connection (1), 
is considered as an object with the repair rate μ0 (which 
is constant in this case). It is necessary to define how the 
probabilities of change of operable p0(t) and non-operable 
p1(t) object’s states change with time, and to find its avail-
ability rate.

A methodological task seems to have easy solution: by 
the known rules [3] it is necessary to form a kind of differ-
ential Kolmogorov equations in reference to p0(t) and p1(t) 
(with consideration of (1)) and to solve them at the given 
initial conditions (for instance, with p0(0)=1; p1(0)=0). 
However, it turned out that if it is relatively simple to write 
the mentioned equations, it is not possible to find their gen-
eral solutions. Thus, the assigned task can not be solved in 
analytical form.

Engineering approach in similar cases involves the search 
for an approximate solution of the task by means of certain 
simplified conditions. One of possible ways to realize such 
approach can be stationarization of the flow of a real non-
stationary object, i.e. its replacement with a certain equiva-
lent virtual object with constant rate λc=const, the value of 
which is selected based on additional considerations [5, 6]. 
Then the assigned task is reduced to the form of a stationary 
one, and its solution does not cause any essential difficulties. 
But the question of how to define λc becomes a question of 
high priority.

Supposing that λc is found based on the condition of 
equality of the lifetimes of a real (“linearly ageing”) object 

(Т) and its equivalent virtual stationary one , i.e. 

based on the correlation Tc=T. If we replace Т in the left 
part of the formula (7) with 1/λc and solve the equation for 
λc, we shall have:

Fig. 2
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; , (9)

where the application range of the formula (9) is derived 

from the condition , accepted at the execution of the 

real research. The formula (9) shows how λc is related to 
the parameters of λ(t) characteristics of a real object. The 
graphs of this dependency with different values of λ0 are 
quantitatively shown in Fig. 2.

After determination of λc the p0(t) value task is reduced 
to a stationary case; its solution result is known (see, for 
instance, [7]). If we substitute it with λc derived from the 
formula (9), we shall definitely have:

 
, (10)

 
. (11)

We use (10) to find the final probability of the operable 
state p0(∞), which does numerically coincide here with an 
object’s availability factor kГ:

.

The dependency graphs kГ = kГ(а) for different values of 
λ0 are quantitatively shown in Fig.3.

As expected from physical views, kГ decreases with an 
ageing coefficient а.

Therefore, the efficiency of the proposed method for sta-
tionarization of the “linearly ageing” object’s failure flow is 
shown by the example of one of possible practical tasks the 
solution of which is deduced in analytical form.
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